Al-Taie, A., Sancar, M., & Izzettin, F. V. (2021). 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. In Cancer (pp. 179-187). Elsevier. https://doi.org/10.1016/B978-0-12-819547-5.00017-1
Association AP (2013) Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425787
Bandookwala M, Sengupta P (2020) 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int J Neurosci 130(10):1047–1062. https://doi.org/10.1080/00207454.2020.1713776
Article CAS PubMed Google Scholar
Bhatia S, Arslan E, Rodriguez-Hernandez LD, Bonin R, Wells PG (2022) DNA damage and repair and epigenetic modification in the role of oxoguanine glycosylase 1 in brain development. Toxicol Sci 187(1):93–111. https://doi.org/10.1093/toxsci/kfac003
Article CAS PubMed Google Scholar
Colombo, G., Clerici, M., Giustarini, D., Portinaro, N., Badalamenti, S., Rossi, R., Milzani, A., & Dalle-Donne, I. (2015). A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1850(1), 1-12. https://doi.org/10.1016/j.bbagen.2014.09.024
Fleming AM, Ding Y, Burrows CJ (2017) Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci 114(10):2604–2609. https://doi.org/10.1073/pnas.1619809114
Article CAS PubMed PubMed Central Google Scholar
Garre-Morata L, de Haro T, Villén RG, Fernández-López ML, Escames G, Molina-Carballo A, Acuña-Castroviejo D (2024) Changes in cortisol and in oxidative/nitrosative stress indicators after ADHD treatment. Antioxidants 13(1):92. https://doi.org/10.3390/antiox13010092
Article CAS PubMed PubMed Central Google Scholar
Gohil D, Sarker AH, Roy R (2023) Base excision repair: mechanisms and impact in biology, disease, and medicine. Int J Mol Sci 24(18):14186. https://doi.org/10.3390/ijms241814186
Article CAS PubMed PubMed Central Google Scholar
Graille M, Wild P, Sauvain J-J, Hemmendinger M, Guseva Canu I, Hopf NB (2020) Urinary 8-OHdG as a biomarker for oxidative stress: a systematic literature review and meta-analysis. Int J Mol Sci 21(11):3743. https://doi.org/10.3390/ijms21113743
Article CAS PubMed PubMed Central Google Scholar
Hirota T, King BH (2023) Autism Spectrum Disorder: a Review. Jama 329(2):157–168. https://doi.org/10.1001/jama.2022.23661
Article CAS PubMed Google Scholar
Jasenovec T, Radosinska D, Jansakova K, Kopcikova M, Tomova A, Snurikova D, Vrbjar N, Radosinska J (2023) Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder. Antioxidants 12(12):2054. https://doi.org/10.3390/antiox12122054
Article CAS PubMed PubMed Central Google Scholar
Kehm R, Baldensperger T, Raupbach J, Höhn A (2021) Protein oxidation-Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 42:101901. https://doi.org/10.1016/j.redox.2021.101901
Article CAS PubMed PubMed Central Google Scholar
Kilicaslan F, Ayaydin H, Celik H, Kutuk MO, Kandemir H, Koyuncu I, Kirmit A (2019) Antineuronal antibodies and 8-OHdG an indicator of cerebellar dysfunction in autism spectrum disorder: a case–control study. Psychiatry and Clinical Psychopharmacology 29(4):840–846. https://doi.org/10.1080/24750573.2019.1674241
Kohl TO, Ascoli CA (2017) Immunometric antibody sandwich enzyme-linked immunosorbent assay. Cold Spring Harb Protoc 2017(6):93716. https://doi.org/10.1101/pdb.prot093716
Kuźniar-Pałka A (2025) The Role of Oxidative Stress in Autism Spectrum Disorder Pathophysiology. Diagnosis and Treatment. Biomedicines 13(2):388. https://doi.org/10.3390/biomedicines13020388
Article CAS PubMed Google Scholar
Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L (2022) Oxidative stress in autism spectrum disorder—current progress of mechanisms and biomarkers. Front Psych 13:813304. https://doi.org/10.3389/fpsyt.2022.813304
Nasrallah O, Alzeer S (2022) Measuring some oxidative stress biomarkers in autistic Syrian children and their siblings: a case-control study. Biomarker Insights 17:11772719221123912. https://doi.org/10.1177/11772719221123913
Article PubMed PubMed Central Google Scholar
Porokhovnik, L., Kostyuk, S., Ershova, E., Stukalov, S., Veiko, N., Korovina, N. Y., Gorbachevskaya, N., Sorokin, A., & Lyapunova, N. (2016). The maternal effect in infantile autism: elevated DNA damage degree in patients and their mothers. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 10, 322-326. https://doi.org/10.18097/pbmc20166204466
Rose S, Melnyk S, Pavliv O, Bai S, Nick T, Frye R, James S (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2(7):e134–e134. https://doi.org/10.1038/tp.2012.61
Article CAS PubMed PubMed Central Google Scholar
Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. The Cerebellum 8:366–372. https://doi.org/10.1007/s12311-009-0105-9
Article CAS PubMed Google Scholar
Sajdel-Sulkowska EM, Xu M, McGinnis W, Koibuchi N (2011) Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). The Cerebellum 10:43–48. https://doi.org/10.1007/s12311-010-0223-4
Article CAS PubMed Google Scholar
Sidlauskaite E, Gibson JW, Megson IL, Whitfield PD, Tovmasyan A, Batinic-Haberle I, Murphy MP, Moult PR, Cobley JN (2018) Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biol 16:344–351. https://doi.org/10.1016/j.redox.2018.03.012
Article CAS PubMed PubMed Central Google Scholar
Steullet P, Cabungcal J, Coyle J, Didriksen M, Gill K, Grace A, Hensch T, LaMantia A, Lindemann L, Maynard T (2017) Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 22(7):936–943. https://doi.org/10.1038/mp.2017.47
Article CAS PubMed PubMed Central Google Scholar
Whitaker AM, Schaich MA, Smith MS, Flynn TS, Freudenthal BD (2017) Base excision repair of oxidative DNA damage: from mechanism to disease. Frontiers in Bioscience (Landmark Edition) 22:1493
Zaky EA, Abd Elhameed SA, Ismail SM, Eldamer NM, Abdelaziz AW (2023) Analysis of urinary 8-hydroxy-2-deoxyguanosine as a biomarker of oxidative DNA damage in pediatric children with autism spectrum disorder. Research in Autism Spectrum Disorders 102:102129. https://doi.org/10.1016/j.rasd.2023.102129
Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, Yusuf A, Shih A, Elsabbagh M (2022) Global prevalence of autism: A systematic review update. Autism Res 15(5):778–790. https://doi.org/10.1002/aur.2696
Article PubMed PubMed Central Google Scholar
Zhao Y, Zhang L, Ouyang X, Jiang Z, Xie Z, Fan L, Zhu D, Li L (2019) Advanced oxidation protein products play critical roles in liver diseases. Eur J Clin Invest 49(6):e13098. https://doi.org/10.1111/eci.13098
Zhong Y, Zhang X, Feng R, Fan Y, Zhang Z, Zhang QW, Wan JB, Wang Y, Yu H, Li G (2024) OGG1: An emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage. Med Res Rev 44(6):2825–2848. https://doi.org/10.1002/med.22068
Comments (0)