Agatonovic-Kustrin S, Ling LH, Tham SY, Alany RG (2002) Molecular descriptors that influence the amount of drugs transfer into human breast milk. J Pharm Biomed Anal 29:103–119. https://doi.org/10.1016/S0731-7085(02)00037-7
Article CAS PubMed Google Scholar
Alcorn J, Lu X, Moscow JA, McNamara PJ (2002) Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J Pharmacol Exp Ther 303:487–496. https://doi.org/10.1124/jpet.102.038315
Article CAS PubMed Google Scholar
Almeida JS (2002) Predictive non-linear modeling of complex data by artificial neural networks. Curr Opin Biotechnol 13:72–76. https://doi.org/10.1016/s0958-1669(02)00288-4
Article CAS PubMed Google Scholar
Anderson PO (2018) Drugs in lactation. Pharm Res 35:45. https://doi.org/10.1007/s11095-017-2287-z
Article CAS PubMed Google Scholar
Arbitman L, Chen S, Kim B, Lee M, Zou P, Doughty B, Li Y, Zhang T (2024) Assessment of infant exposure to antidepressants through breastfeeding: a literature review of currently available approaches. Pharmaceutics 16:847. https://doi.org/10.3390/pharmaceutics16070847
Article CAS PubMed PubMed Central Google Scholar
Archana H T, Sachin D (2015) Dimensionality reduction and classification through PCA and LDA. Int J. Comput Appl 122:4–8. https://doi.org/10.5120/21790-5104
Athavale M, Maitra A, Patel S, Bhate V, Toddywalla V (2013) Development of an in vitro cell culture model to study milk to plasma ratios of therapeutic drugs. Indian J Pharmacol 45:325. https://doi.org/10.4103/0253-7613.114994
Article CAS PubMed PubMed Central Google Scholar
Begg EJ, Atkinson HC (1993) Modelling of the passage of drugs into milk. Pharmacol Ther 59:301–310. https://doi.org/10.1016/0163-7258(93)90072-l
Article CAS PubMed Google Scholar
Binns C, Lee M, Low WY (2016) The long-term public health benefits of breastfeeding. Asia Pac J Public Health 28:7–14. https://doi.org/10.1177/1010539515624964
Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/a:1010933404324
Daoud M, Mayo M (2019) A survey of neural network-based cancer prediction models from microarray data. Artif Intell Med 97:204–214. https://doi.org/10.1016/j.artmed.2019.01.006
García-Lino AM, Álvarez-Fernández I, Blanco-Paniagua E, Merino G, Álvarez AI (2019) Transporters in the mammary gland—contribution to presence of nutrients and drugs into milk. Nutrients 11:2372. https://doi.org/10.3390/nu11102372
Article CAS PubMed PubMed Central Google Scholar
Guo G, Wang H, Bell D, Bi Y, Greer K (2003) KNN Model-Based Approach in Classification. In: Meersman R, Tari Z, Schmidt DC (eds) On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. OTM 2003. Lecture Notes in Computer Science, vol 2888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39964-3_62
Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst Their Appl 13:18–28. https://doi.org/10.1109/5254.708428
Hotham N, Hotham E (2015) Drugs in breastfeeding. Aust Prescr 38:156–159. https://doi.org/10.18773/austprescr.2015.056
Article PubMed PubMed Central Google Scholar
Intelligent Learning and Verification of Biological Networks (2021) In: Computational biology. Springer, Cham, pp 3–28. https://doi.org/10.1007/978-3-030-69951-2_1
Jiang X, Xu C (2022) Deep learning and machine learning with grid search to predict later occurrence of breast cancer metastasis using clinical data. J Clin Med 11:5772. https://doi.org/10.3390/jcm11195772
Article PubMed PubMed Central Google Scholar
Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 374:20150202. https://doi.org/10.1098/rsta.2015.0202
Katritzky AR, Dobchev DA, Hür E, Fara DC, Karelson M (2005) QSAR treatment of drugs transfer into human breast milk. Bioorg Med Chem 13:1623–1632. https://doi.org/10.1016/j.bmc.2004.12.015
Article CAS PubMed Google Scholar
Li Z, Liu F, Yang W, Peng S, Zhou J (2022) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst 33:6999–7019. https://doi.org/10.1109/tnnls.2021.3084827
Maeshima T, Yoshida S, Watanabe M, Itagaki F (2023) Prediction model for milk transfer of drugs by primarily evaluating the area under the curve using QSAR/QSPR. Pharm Res 40:711–719. https://doi.org/10.1007/s11095-023-03477-1
Article CAS PubMed PubMed Central Google Scholar
McManaman JL, Neville MC (2003) Mammary physiology and milk secretion. Adv Drug Deliv Rev 55:629–641. https://doi.org/10.1016/S0169-409X(03)00033-4
Article CAS PubMed Google Scholar
Meskin MS, Lien EJ (1985) QSAR analysis of drug excretion into human breast milk. J Clin Pharm Ther 10:269–278. https://doi.org/10.1111/j.1365-2710.1985.tb00924.x
Meyer H, Reudenbach C, Wöllauer S, Nauss T (2019) Importance of spatial predictor variable selection in machine learning applications—moving from data reproduction to spatial prediction. Ecol Model 411:108815. https://doi.org/10.1016/j.ecolmodel.2019.108815
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Müller A, Nothman J, Louppe G, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2012) Scikit-learn: machine learning in python. https://doi.org/10.48550/ARXIV.1201.0490
Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29:2352–2449. https://doi.org/10.1162/neco_a_00990
Santos CFGD, Papa JP (2022) Avoiding overfitting: a survey on regularization methods for convolutional neural networks. ACM Comput Surv 54:1–25. https://doi.org/10.1145/3510413
Shamir R (2016) The benefits of breast feeding. Nestle Nutr Inst Workshop Ser 86:67–76. https://doi.org/10.1159/000442724
Shen K, Guo J, Tan X, Tang S, Wang R, Bian J (2023) A study on ReLU and Softmax in transformer. https://doi.org/10.48550/ARXIV.2302.06461
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res 15(56):1929–1958. http://jmlr.org/papers/v15/srivastava14a.html
Tabashum T, Snyder RC, O’Brien MK, Albert MV (2024) Machine learning models for parkinson disease: systematic review. JMIR Med Inform 12:e50117–e50117. https://doi.org/10.2196/50117
Article PubMed PubMed Central Google Scholar
TensorFlow Developers (2024) TensorFlow. https://doi.org/10.5281/ZENODO.4724125
Toddywalla VS, Kari FW, Neville MC (1997) Active transport of nitrofurantoin across a mouse mammary epithelial monolayer. J Pharmacol Exp Ther 280:669–676
Truchet S, Honvo-Houéto E (2017) Physiology of milk secretion. Best Pract Res Clin Endocrinol Metab 31:367–384. https://doi.org/10.1016/j.beem.2017.10.008
Article CAS PubMed Google Scholar
Wang J, Johnson T, Sahin L, Tassinari MS, Anderson PO, Baker TE, Bucci-Rechtweg C, Burckart GJ, Chambers CD, Hale TW, Johnson-Lyles D, Nelson RM, Nguyen C, Pica-Branco D, Ren Z, Sachs H, Sauberan J, Zajicek A, Ito S, Yao LP (2017) Evaluation of the safety of drugs and biological products used during lactation: workshop summary. Clin Pharmacol Ther 101:736–744. https://doi.org/10.1002/cpt.676
Article CAS PubMed Google Scholar
Yang H, Xue I, Gu Q, Zou P, Zhang T, Lu Y, Fisher J, Tran D (2022) Developing an in vitro to in vivo extrapolation (IVIVE) model to predict human milk-to-plasma drug concentration ratios. Mol Pharm 19:2506–2517. https://doi.org/10.1021/acs.molpharmaceut.2c00193
Comments (0)