Informatics for toxicokinetics

O'Flaherty, E.J., Toxicants and Drugs: Kinetics and Dynamics. 1981: Wiley.

Wambaugh JF et al (2018) Evaluating in vitro-in vivo extrapolation of toxicokinetics. Toxicol Sci 163(1):152–169

CAS  PubMed  PubMed Central  Google Scholar 

Bos, A.v.d., in Parameter Estimation for Scientists and Engineers. 2007, Wiley. p. 163–210.

Aerts M, Claeskens G, Hart JD (1999) Testing the Fit of a Parametric Function. J Am Stat Assoc 94(447):869–879

Google Scholar 

Gabrielsson, J. and D. Weiner, Non-compartmental analysis. Methods in Molecular Biology, 2012(1940–6029 (Electronic)).

Barton HA et al (2007) Characterizing Uncertainty and Variability in Physiologically Based Pharmacokinetic Models: State of the Science and Needs for Research and Implementation. Toxicol Sci 99(2):395–402

CAS  PubMed  Google Scholar 

World Health Organization Inter-Organization Programme for the Sound Management of Chemicals, Characterization and application of physiologically based pharmacokinetic models in risk assessment. World Health Organization, International Programme on Chemical Safety, Geneva, Switzerland, 2010.

Bajic, V.B., et al., From informatics to bioinformatics, in Proceedings of the First Asia-Pacific bioinformatics conference on Bioinformatics 2003 - Volume 19. 2003, Australian Computer Society, Inc.: Adelaide, Australia. p. 3–12.

Lipinski, C.A., Lead- and drug-like compounds: the rule-of-five revolution. 2004(1740–6749 (Print)).

Lombardo F, Berellini G, Obach RS (2018) Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 1352 drug compounds. Drug Metab Dispos 46(11):1466–1477

CAS  PubMed  Google Scholar 

Obach RS, Lombardo F, Waters NJ (2008) Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36(7):1385–1405

CAS  PubMed  Google Scholar 

Bois FY et al (2020) Well-tempered MCMC simulations for population pharmacokinetic models. J Pharmacokinet Pharmacodyn 47(6):543–559

PubMed  PubMed Central  Google Scholar 

Chiu, W.A.-O., et al., Bayesian Estimation of Human Population Toxicokinetics of PFOA, PFOS, PFHxS, and PFNA from Studies of Contaminated Drinking Water. 2022(1552–9924 (Electronic)).

Zurlinden, T.J., et al., Estimation of species- and sex-specific PFAS pharmacokinetics in mice, rats, and non-human primates usig a Bayesian hierarchical methodology. 2024.

Chou, W.A.-O. and Z.A.-O. Lin, Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. 2023(1096–0929 (Electronic)).

Kavlock, R.J., et al., Accelerating the Pace of Chemical Risk Assessment. 2018(1520–5010 (Electronic)).

Sayre, R.R., J.F. Wambaugh, and C.M. Grulke, Database of pharmacokinetic time-series data and parameters for 144 environmental chemicals. Scientific Data, 2020.

Jaki T (2011) Estimation of pharmacokinetic parameters with the R package PK. Pharm Stat 10(3):284–288

Google Scholar 

Sheiner LB (1985) Analysis of pharmacokinetic data using parametric models. II. Point estimates of an individual’s parameters. J Pharmacokinet Biopharm 13(5):515–540

CAS  PubMed  Google Scholar 

Campbell JL et al (2012) Physiologically based pharmacokinetic/toxicokinetic modeling. Computational Toxicol: I:439–499

Google Scholar 

Yang Y, Xu X, Georgopoulos PG (2010) A Bayesian population PBPK model for multiroute chloroform exposure. J Eposure Sci Environ Epidemiol 20(4):326–341

CAS  Google Scholar 

Gift, J., et al., Benchmark Dose Software (BMDS) Version 3.3, in (EPA/600/R-21/245), EPA, Editor. 2022.

Wakefield J, Aarons L, Racine-Poon A (1999) The Bayesian approach to population pharmacokinetic/pharmacodynamic modeling. Case Studies in Bayesian Statistics, vol IV. Springer, pp 205–265

Google Scholar 

Cox, D.R. and D.V. Hinkley, Theoretical statistics. 1979: CRC Press.

Bartlett MS (1953) Approximate confidence intervals.II. More than one Unknown Parameter. Biometrika 40(3/4):306–317

Google Scholar 

Nash JC (2014) On best practice optimization methods in R. J Stat Softw 60(2):1–14

Google Scholar 

Nash JC, Varadhan R (2011) Unifying optimization algorithms to aid software system users: optimx for R. J Stat Softw 43(9):1–14

Google Scholar 

Byrd RH et al (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208

Google Scholar 

Powell, M.J., The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 2009. 26: p. 26–46.

Stoica P, Selen Y (2004) Model-order selection: a review of information criterion rules. IEEE Signal Process Mag 21(4):36–47

Google Scholar 

Musther H et al (2014) Animal versus human oral drug bioavailability: do they correlate? Eur J Pharm Sci 57:280–291

CAS  PubMed  PubMed Central  Google Scholar 

Pearce RG et al (2017) Evaluation and calibration of high-throughput predictions of chemical distribution to tissues. J Pharmacokinet Pharmacodyn 44(6):549–565

CAS  PubMed  PubMed Central  Google Scholar 

McLanahan ED et al (2012) Physiologically based pharmacokinetic model use in risk assessment—why being published is not enough. Toxicol Sci 126(1):5–15

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif