Predicting tumor dynamics in treated patients from patient-derived-xenograft mouse models: a translational model-based approach

Bruno R, Bottino D, de Alwis DP, Fojo AT, Guedj J, Liu C, Swanson KR, Zheng J, Zheng Y, Jin JY (2020) Progress and opportunities to advance clinical cancer therapeutics using tumor dynamic models. Clin Cancer Res Off J Am Assoc Cancer Res 26:1787–1795. https://doi.org/10.1158/1078-0432.CCR-19-0287

Article  CAS  Google Scholar 

Cremolini C, Loupakis F, Antoniotti C, Lonardi S, Masi G, Salvatore L, Cortesi E, Tomasello G, Spadi R, Zaniboni A, Tonini G, Barone C, Vitello S, Longarini R, Bonetti A, D’Amico M, Di Donato S, Granetto C, Boni L, Falcone A (2015) Early tumor shrinkage and depth of response predict long-term outcome in metastatic colorectal cancer patients treated with first-line chemotherapy plus bevacizumab: results from phase III TRIBE trial by the Gruppo Oncologico del Nord Ovest. Ann Oncol Off J Eur Soc Med Oncol 26:1188–1194. https://doi.org/10.1093/annonc/mdv112

Article  CAS  Google Scholar 

Piessevaux H, Buyse M, Schlichting M, Van Cutsem E, Bokemeyer C, Heeger S, Tejpar S (2013) Use of early tumor shrinkage to predict long-term outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol Off J Am Soc Clin Oncol 31:3764–3775. https://doi.org/10.1200/JCO.2012.42.8532

Article  CAS  Google Scholar 

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer Oxf Engl 1990(45):228–247. https://doi.org/10.1016/j.ejca.2008.10.026

Article  Google Scholar 

Padhani AR, Ollivier L (2001) The RECIST (response evaluation criteria in solid tumors) criteria: implications for diagnostic radiologists. Br J Radiol 74:983–986. https://doi.org/10.1259/bjr.74.887.740983

Article  CAS  PubMed  Google Scholar 

FDA (2018) Clinical trial endpoints for the approval of cancer drugs and biologics guidance for industry. https://www.fda.gov/media/71195/download

Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K (2022) Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 20:206. https://doi.org/10.1186/s12967-022-03405-8

Article  PubMed  PubMed Central  Google Scholar 

Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M (2021) Cancer models in preclinical research: a chronicle review of advancement in effective cancer research. Anim Models Exp Med 4:87–103. https://doi.org/10.1002/ame2.12165

Article  Google Scholar 

Ireson CR, Alavijeh MS, Palmer AM, Fowler ER, Jones HJ (2019) The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer 121:101–108. https://doi.org/10.1038/s41416-019-0495-5

Article  PubMed  PubMed Central  Google Scholar 

Yates JWT, Byrne H, Chapman SC, Chen T, Cucurull-Sanchez L, Delgado-SanMartin J, Di Veroli G, Dovedi SJ, Dunlop C, Jena R, Jodrell D, Martin E, Mercier F, Ramos-Montoya A, Struemper H, Vicini P (2020) Opportunities for quantitative translational modeling in oncology. Clin Pharmacol Ther 108:447–457. https://doi.org/10.1002/cpt.1963

Article  PubMed  Google Scholar 

Pagano E, Bergamo A, Carpi S, Donnini S, Notarbartolo Di Villarosa M, Serpe L, Lisi L (2021) Preclinical models in oncological pharmacology: limits and advantages. Pharmadvances. https://doi.org/10.36118/pharmadvances.2021.05

Article  Google Scholar 

Carrara L, Lavezzi SM, Borella E, De Nicolao G, Magni P, Poggesi I (2017) Current mathematical models for cancer drug discovery. Expert Opin Drug Discov 12:785–799

PubMed  Google Scholar 

Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I, Rocchetti M (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64:1094–1101. https://doi.org/10.1158/0008-5472.can-03-2524

Article  CAS  PubMed  Google Scholar 

Tosca EM, Rocchetti M, Pesenti E, Magni P (2020) A tumor-in-host DEB-based approach for modeling cachexia and bevacizumab resistance. Cancer Res 80:820–831. https://doi.org/10.1158/0008-5472.CAN-19-0811

Article  PubMed  Google Scholar 

Terranova N, Tosca EM, Pesenti E, Rocchetti M, Magni P (2018) Modeling tumor growth inhibition and toxicity outcome after administration of anticancer agents in xenograft mice: a dynamic energy budget (DEB) approach. J Theor Biol 450:1–14

CAS  PubMed  Google Scholar 

Tosca EM, Pigatto MC, Dalla Costa T, Magni P (2019) A population dynamic energy budget-based tumor growth inhibition model for etoposide effects on wistar rats. Pharm Res 36:38

CAS  PubMed  Google Scholar 

Tosca EM, Gauderat G, Fouliard S, Burbridge M, Chenel M, Magni P (2021) Modeling restoration of gefitinib efficacy by co-administration of MET inhibitors in an EGFR inhibitor-resistant NSCLC xenograft model: a tumor-in-host DEB-based approach. CPT Pharmacomet Syst Pharmacol. https://doi.org/10.1002/psp4.12710

Article  Google Scholar 

Garcia-Cremades M, Pitou C, Iversen PW, Troconiz IF (2017) Characterizing gemcitabine effects administered as single agent or combined with carboplatin in mice pancreatic and ovarian cancer xenografts: a semimechanistic pharmacokinetic/pharmacodynamics tumor growth-response model. J Pharmacol Exp Ther 360:445–456. https://doi.org/10.1124/jpet.116.237610

Article  CAS  PubMed  Google Scholar 

Tosca EM, Borella E, Piana C, Bouchene S, Merlino G, Fiascarelli A, Mazzei P, Magni P (2023) Model-based prediction of effective target exposure for MEN1611 in combination with trastuzumab in HER2-positive advanced or metastatic breast cancer patients. CPT Pharmacomet Syst Pharmacol 12:1626–1639. https://doi.org/10.1002/psp4.12910

Article  CAS  Google Scholar 

Tosca EM, Terranova N, Stuyckens K, Dosne AG, Perera T, Vialard J, King P, Verhulst T, Perez-Ruixo JJ, Magni P, Poggesi I (2022) A translational model-based approach to inform the choice of the dose in phase 1 oncology trials: the case study of erdafitinib. Cancer Chemother Pharmacol 89:117–128. https://doi.org/10.1007/s00280-021-04370-7

Article  CAS  PubMed  Google Scholar 

Rocchetti M, Simeoni M, Pesenti E, De Nicolao G, Poggesi I (2007) Predicting the active doses in humans from animal studies: a novel approach in oncology. Eur J Cancer Oxf Engl 1990(43):1862–1868. https://doi.org/10.1016/j.ejca.2007.05.011

Article  CAS  Google Scholar 

Wong H, Choo EF, Alicke B, Ding X, La H, McNamara E, Theil FP, Tibbitts J, Friedman LS, Hop CECA, Gould SE (2012) Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-12-0738

Article  PubMed  PubMed Central  Google Scholar 

Wong H, Vernillet L, Peterson A, Ware JA, Lee L, Martini JF, Yu P, Li C, Del Rosario G, Choo EF, Hoeflich KP, Shi Y, Aftab BT, Aoyama R, Lam ST, Belvin M, Prescott J (2012) Bridging the gap between preclinical and clinical studies using pharmacokinetic-pharmacodynamic modeling: an analysis of GDC-0973, a MEK inhibitor. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-12-0445

Article  PubMed  PubMed Central  Google Scholar 

Garcia-Cremades M, Pitou C, Iversen PW, Troconiz IF (2019) Translational framework predicting tumour response in gemcitabine-treated patients with advanced pancreatic and ovarian cancer from xenograft studies. AAPS J 21:23. https://doi.org/10.1208/s12248-018-0291-9

Article  PubMed  Google Scholar 

Baaz M, Cardilin T, Lignet F, Jirstrand M (2022) Optimized scaling of translational factors in oncology: from xenografts to RECIST. Cancer Chemother Pharmacol 90:239–250. https://doi.org/10.1007/s00280-022-04458-8

Article  PubMed  PubMed Central  Google Scholar 

Tosca EM, Ronchi D, Rocchetti M, Magni P (2024) Predicting tumor volume doubling time and progression-free survival in untreated patients from patient-derived-xenograft (PDX) models: a translational model-based approach. AAPS J 26:92. https://doi.org/10.1208/s12248-024-00960-4

Article  CAS  PubMed  Google Scholar 

Mistry HB (2017) On the relationship between tumour growth rate and survival in non-small cell lung cancer. PeerJ 5:e4111. https://doi.org/10.7717/peerj.4111

Article  PubMed  PubMed Central  Google Scholar 

Nagase M, Doshi S, Dutta S, Lin C-W (2022) Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model. J Pharmacokinet Pharmacodyn 49:455–469. https://doi.org/10.1007/s10928-022-09816-w

Article  PubMed  Google Scholar 

Hong JY, Nam EM, Lee J, Park JO, Lee S-C, Song S-Y, Choi SH, Heo JS, Park SH, Lim HY, Kang WK, Park YS (2014) Randomized double-blinded, placebo-controlled phase II trial of simvastatin and gemcitabine in advanced pancreatic cancer patients. Cancer Chemother Pharmacol 73:125–130. https://doi.org/10.1007/s00280-013-2328-1

Article  CAS  PubMed  Google Scholar 

Kindler HL, Ioka T, Richel DJ, Bennouna J, Létourneau R, Okusaka T, Funakoshi A, Furuse J, Park YS, Ohkawa S, Springett GM, Wasan HS, Trask PC, Bycott P, Ricart AD, Kim S, Van Cutsem E (2011) Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. Lancet Oncol 12:256–262. https://doi.org/10.1016/S1470-2045(11)70004-3

Comments (0)

No login
gif