A translational physiologically-based pharmacokinetic model for MMAE-based antibody-drug conjugates

Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ et al (2012) Results of a pivotal phase II study of Brentuximab Vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 30(18):2183–2189. https://doi.org/10.1200/jco.2011.38.0410

Article  PubMed  PubMed Central  CAS  Google Scholar 

Willer A, Gerss J, König T, Franke D, Kühnel HJ, Henze G et al (2011) Anti-Escherichia coli asparaginase antibody levels determine the activity of second-line treatment with pegylated E coli asparaginase: a retrospective analysis within the ALL-BFM trials. Blood 118(22):5774–5782. https://doi.org/10.1182/blood-2011-07-367904

Article  PubMed  CAS  Google Scholar 

Chang HP, Cheung YK, Shah DK (2023) Chapter 7 - Discovery and development of ADCs: Obstacles and opportunities. In: He K, Hollenberg PF, Wienkers LC (eds) Overcoming Obstacles in drug discovery and development. Academic, pp 75–106

Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M (2013) Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics. Bioanalysis 5(2):201–226. https://doi.org/10.4155/bio.12.299

Article  PubMed  CAS  Google Scholar 

Chen Y, Samineni D, Mukadam S, Wong H, Shen BQ, Lu D et al (2015) Physiologically based Pharmacokinetic modeling as a tool to predict drug interactions for antibody-drug conjugates. Clin Pharmacokinet 54(1):81–93. https://doi.org/10.1007/s40262-014-0182-x

Article  PubMed  CAS  Google Scholar 

Samineni D, Ding H, Ma F, Shi R, Lu D, Miles D et al (2020) Physiologically based Pharmacokinetic Model-Informed drug development for polatuzumab Vedotin: label for drug-Drug interactions without dedicated clinical trials. J Clin Pharmacol 60(Suppl 1):S120–s31. https://doi.org/10.1002/jcph.1718

Article  PubMed  CAS  Google Scholar 

Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp® Population-based ADME simulator. Expert Opin Drug Metab Toxicol 5(2):211–223. https://doi.org/10.1517/17425250802691074

Article  PubMed  CAS  Google Scholar 

Choules MP, Zuo P, Otsuka Y, Garg A, Tang M, Bonate P (2023) Physiologically based Pharmacokinetic model to predict drug–drug interactions with the antibody–drug conjugate enfortumab Vedotin. J Pharmacokinet Pharmacodyn. https://doi.org/10.1007/s10928-023-09877-5

Article  PubMed  PubMed Central  Google Scholar 

Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM (2016) Multiscale modeling of Antibody-Drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. Aaps J 18(5):1117–1130. https://doi.org/10.1208/s12248-016-9940-z

Article  PubMed  CAS  Google Scholar 

Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8(10):2861–2871. https://doi.org/10.1158/1535-7163.Mct-09-0195

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khot A, Tibbitts J, Rock D, Shah DK (2017) Development of a translational physiologically based Pharmacokinetic model for Antibody-Drug conjugates: a case study with T-DM1. Aaps J 19(6):1715–1734. https://doi.org/10.1208/s12248-017-0131-3

Article  PubMed  CAS  Google Scholar 

Shen B-Q, Bumbaca D, Saad O, Yue Q, Pastuskovas V, Cyrus Khojasteh C (2012) Catabolic fate and Pharmacokinetic characterization of trastuzumab emtansine (T-DM1): an emphasis on preclinical and clinical catabolism. Curr Drug Metab 13(7):901–910. https://doi.org/10.2174/138920012802138598

Article  PubMed  CAS  Google Scholar 

Li. L, Chen. S-C SF, Rose. R, Rao. I, Gardner. I et al Whole body physiologically based Pharmacokinetic model for antibody drug Conjugates - model development and verification in rats. Presented at: population approach group in Europe (PAGE); June 6–9, 2017, Budapest, Hungary.

Chang H-P, Li Z, Shah DK (2022) Development of a Physiologically-Based Pharmacokinetic model for Whole-Body disposition of MMAE containing Antibody-Drug conjugate in mice. Pharm Res 39(1):1–24. https://doi.org/10.1007/s11095-021-03162-1

Article  PubMed  CAS  Google Scholar 

Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86. https://doi.org/10.1007/s10928-011-9232-2

Article  PubMed  CAS  Google Scholar 

Chang HP, Cheung YK, Shah DK (2021) Whole-Body pharmacokinetics and physiologically based Pharmacokinetic model for monomethyl auristatin E (MMAE). J Clin Med 10(6):1332

PubMed  PubMed Central  CAS  Google Scholar 

Rohatgi A (2022) WebPlotDigitizer (Version 4.6) [Computer software]. Retrieved from https://automeris.io/WebPlotDigitizer

Li C, Zhang C, Li Z, Samineni D, Lu D, Wang B et al (2020) Clinical Pharmacology of vc-MMAE antibody-drug conjugates in cancer patients: learning from eight first-in-human phase 1 studies. MAbs 12(1):1699768. https://doi.org/10.1080/19420862.2019.1699768

Article  PubMed  CAS  Google Scholar 

Chang H-P, Cheung YK, Liu S, Shah DK Development of a generalized Pharmacokinetic model to characterize clinical Pharmacokinetics of monomethyl auristatin E-based antibody–drug conjugates. Br J Clin Pharmacol. 2024;n/a(n/a). https://doi.org/10.1111/bcp.16057

Adcetris Adcetris Assessment report EMA/702390/2012.;2012 July 19. Available from: https://www.ema.europa.eu/en/documents/assessment-report/adcetris-epar-public-assessment-report_en.pdf

Chang H-Y, Wu S, Meno-Tetang G, Shah DK (2019) A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn 46(4):319–338. https://doi.org/10.1007/s10928-019-09641-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Center for Drug Evaluation and Research Clinical Pharmacology and Biopharmaceutics Review for Adcetris; Silver Spring (MD); 2011 [cited 2022 Sep 1]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/125388Orig1s000ClinPharmR.pdf

Center for Drug Evaluation and Research Clinical Pharmacology Review for Polivy; Silver Spring (MD); 2018 [cited 2022 Sep 1]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761121Orig1s000ClinPharmR.pdf

Sharma V, McNeill JH (2009) To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol 157(6):907–921. https://doi.org/10.1111/j.1476-5381.2009.00267.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276(5309):122–126. https://doi.org/10.1126/science.276.5309.122

Article  PubMed  CAS  Google Scholar 

Marabelle A, Andtbacka R, Harrington K, Melero I, Leidner R, de Baere T et al (2018) Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann Oncol 29(11):2163–2174. https://doi.org/10.1093/annonc/mdy423

Article  PubMed  PubMed Central  CAS  Google Scholar 

Anami Y, Yamazaki CM, Xiong W, Gui X, Zhang N, An Z, Tsuchikama K (2018) Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nat Commun 9(1):2512. https://doi.org/10.1038/s41467-018-04982-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Durbin KR, Nottoli MS, Catron ND, Richwine N, Jenkins GJ, High-Throughput (2017) Multispecies, parallelized plasma stability assay for the determination and characterization of Antibody–Drug conjugate aggregation and drug release. ACS Omega 2(8):4207–4215. https://doi.org/10.1021/acsomega.7b00452

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dorywalska M, Dushin R, Moine L, Farias SE, Zhou D, Navaratnam T et al (2016) Molecular basis of Valine-Citrulline-PABC linker instability in Site-Specific ADCs and its mitigation by linker design. Mol Cancer Ther 15(5):958–970. https://doi.org/10.1158/1535-7163.Mct-15-1004

Article  PubMed  CAS  Google Scholar 

Bargh JD, Isidro-Llobet A, Parker JS, Spring DR (2019) Cleavable linkers in antibody–drug conjugates. Chem Soc Rev 48(16):4361–4374. https://doi.org/10.1039/C8CS00676H

Article  PubMed  CAS  Google Scholar 

Dokter W, Ubink R, van der Lee M, van der Vleuten M, van Achterberg T, Jacobs D et al (2014) Preclinical profile of the HER2-targeting ADC SYD983/SYD985: introduction of a new duocarmycin-based linker-drug platform. Mol Cancer Ther 13(11):2618–2629. https://doi.org/10.1158/1535-7163.Mct-14-0040-t

Article  PubMed  CAS  Google Scholar 

Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288.

Comments (0)

No login
gif