Ette EI, Williams PJ (2007) Pharmacometrics: the science of quantitative pharmacology. John Wiley & Sons
Gieschke R, Steimer JL (2000) Pharmacometrics: modelling and simulation tools to improve decision making in clinical drug development. Eur J Drug Metab Pharmacokinet 25(1):49–58. https://doi.org/10.1007/BF03190058
Article CAS PubMed Google Scholar
Bauer RJ (2019) NONMEM tutorial part I: description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol 8(8):525–537. https://doi.org/10.1002/psp4.12404
Article CAS PubMed PubMed Central Google Scholar
Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79(3):241–257. https://doi.org/10.1016/j.cmpb.2005.04.005
Keizer RJ, Karlsson MO, Hooker A (2013) Modeling and simulation workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol 2(6):e50. https://doi.org/10.1038/psp.2013.24
Article CAS PubMed PubMed Central Google Scholar
Zheng Y, Koh HY, Yang M, Li L, May LT, Webb GI, Pan S, Church G (2024) Large language models in drug discovery and development: From disease mechanisms to clinical trials. arXiv preprint arXiv:240904481
Mak K-K, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today 24(3):773–780
OpenAI ChatGPT website. https://chat.openai.com. Accessed 17 April 2025
Anthropic Claude website. https://claude.ai. Accessed 17 April 2025
Google DeepMind. Gemini website. https://gemini.google.com/app. Accessed 17 April 2025
Meta AI. LLaMA website. https://ai.meta.com/llama. Accessed 17 April 2025
Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW (2023) Large language models in medicine. Nat Med 29(8):1930–1940
Shin E, Yu Y, Bies RR, Ramanathan M (2024) Evaluation of ChatGPT and Gemini large language models for pharmacometrics with NONMEM. J Pharmacokinet Pharmacodyn 51(3):187–197. https://doi.org/10.1007/s10928-024-09921-y
Cloesmeijer ME, Janssen A, Koopman SF, Cnossen MH, Mathot RAA, consortium S (2024) ChatGPT in pharmacometrics? Potential opportunities and limitations. Br J Clin Pharmacol 90(1):360–365. https://doi.org/10.1111/bcp.15895
Article CAS PubMed Google Scholar
Shin E, Ramanathan M (2024) Evaluation of prompt engineering strategies for pharmacokinetic data analysis with the ChatGPT large language model. J Pharmacokinet Pharmacodyn 51(2):101–108. https://doi.org/10.1007/s10928-023-09892-6
Pastoor D. ddmore_scraping repository. GitHub website. https://github.com/dpastoor/ddmore_scraping. Accessed 17 April 2025
LM Studio. LM Studio website. https://lmstudio.ai. Accessed 17 April 2025
Mermaid Mermaid website. https://mermaid.js.org. Accessed 17 April 2025
Sveidqvist K, Jain A (2021) The official guide to Mermaid. js: create complex diagrams and beautiful flowcharts easily using text and code. Packt Publishing
Schulhoff S, Ilie M, Balepur N, Kahadze K, Liu A, Si C, Li Y, Gupta A, Han H, Schulhoff S (2024) The prompt report: A systematic survey of prompting techniques. arXiv preprint arXiv:240606608
Sun S, Yuan R, Cao Z, Li W, Liu P (2024) Prompt chaining or stepwise prompt? refinement in text summarization. In: Findings of the Association for Computational Linguistics ACL 2024. pp 7551–7558
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy C (2020) SciPy 10: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2
Article CAS PubMed PubMed Central Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing website. https://www.R-project.org/. Accessed 17 April 2025
Velez YR. claudeR: Interface to Claude AI in R. GitHub website. https://github.com/yrvelez/claudeR. Accessed 17 April 2025
Kim H, Han S, Cho YS, Yoon SK, Bae KS (2018) Erratum: Development of R packages: “NonCompart” and “ncar” for noncompartmental analysis (NCA). Transl Clin Pharmacol 26(3):141. https://doi.org/10.12793/tcp.2018.26.3.141
Article PubMed PubMed Central Google Scholar
Shahin MH, Desai P, Terranova N, Guan Y, Helikar T, Lobentanzer S, Liu Q, Lu J, Madhavan S, Mo G (2025) AI-Driven applications in clinical pharmacology and translational science: insights from the ASCPT 2024 AI Preconference. Clin Transl Sci 18(4):e70203
PubMed PubMed Central Google Scholar
Shahin MH, Barth A, Podichetty JT, Liu Q, Goyal N, Jin JY, Ouellet D (2024) Artificial intelligence: from buzzword to useful tool in clinical pharmacology. Clin Pharmacol Ther 115(4):698–709
Chaturvedula A, Calad-Thomson S, Liu C, Sale M, Gattu N, Goyal N (2019) Artificial intelligence and pharmacometrics: time to embrace, capitalize, and advance? CPT: Pharmacometrics & Systems Pharmacology 8(7):440
Rozen N, Bezalel L, Elidan G, Globerson A, Daniel E (2024) Do LLMs have consistent values? arXiv preprint arXiv:240712878
Yao Y, Duan J, Xu K, Cai Y, Sun Z, Zhang Y (2024) A survey on large language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence Comput 4:100211
Das BC, Amini MH, Wu Y (2025) Security and privacy challenges of large language models: A survey. ACM Comput Surv 57(6):1–39
Comments (0)