Leveraging large language models in pharmacometrics: evaluation of NONMEM output interpretation and simulation capabilities

Ette EI, Williams PJ (2007) Pharmacometrics: the science of quantitative pharmacology. John Wiley & Sons

Gieschke R, Steimer JL (2000) Pharmacometrics: modelling and simulation tools to improve decision making in clinical drug development. Eur J Drug Metab Pharmacokinet 25(1):49–58. https://doi.org/10.1007/BF03190058

Article  CAS  PubMed  Google Scholar 

Bauer RJ (2019) NONMEM tutorial part I: description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol 8(8):525–537. https://doi.org/10.1002/psp4.12404

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79(3):241–257. https://doi.org/10.1016/j.cmpb.2005.04.005

Article  PubMed  Google Scholar 

Keizer RJ, Karlsson MO, Hooker A (2013) Modeling and simulation workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol 2(6):e50. https://doi.org/10.1038/psp.2013.24

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng Y, Koh HY, Yang M, Li L, May LT, Webb GI, Pan S, Church G (2024) Large language models in drug discovery and development: From disease mechanisms to clinical trials. arXiv preprint arXiv:240904481

Mak K-K, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today 24(3):773–780

PubMed  Google Scholar 

OpenAI ChatGPT website. https://chat.openai.com. Accessed 17 April 2025

Anthropic Claude website. https://claude.ai. Accessed 17 April 2025

Google DeepMind. Gemini website. https://gemini.google.com/app. Accessed 17 April 2025

Meta AI. LLaMA website. https://ai.meta.com/llama. Accessed 17 April 2025

Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW (2023) Large language models in medicine. Nat Med 29(8):1930–1940

CAS  PubMed  Google Scholar 

Shin E, Yu Y, Bies RR, Ramanathan M (2024) Evaluation of ChatGPT and Gemini large language models for pharmacometrics with NONMEM. J Pharmacokinet Pharmacodyn 51(3):187–197. https://doi.org/10.1007/s10928-024-09921-y

Article  PubMed  Google Scholar 

Cloesmeijer ME, Janssen A, Koopman SF, Cnossen MH, Mathot RAA, consortium S (2024) ChatGPT in pharmacometrics? Potential opportunities and limitations. Br J Clin Pharmacol 90(1):360–365. https://doi.org/10.1111/bcp.15895

Article  CAS  PubMed  Google Scholar 

Shin E, Ramanathan M (2024) Evaluation of prompt engineering strategies for pharmacokinetic data analysis with the ChatGPT large language model. J Pharmacokinet Pharmacodyn 51(2):101–108. https://doi.org/10.1007/s10928-023-09892-6

Article  PubMed  Google Scholar 

Pastoor D. ddmore_scraping repository. GitHub website. https://github.com/dpastoor/ddmore_scraping. Accessed 17 April 2025

LM Studio. LM Studio website. https://lmstudio.ai. Accessed 17 April 2025

Mermaid Mermaid website. https://mermaid.js.org. Accessed 17 April 2025

Sveidqvist K, Jain A (2021) The official guide to Mermaid. js: create complex diagrams and beautiful flowcharts easily using text and code. Packt Publishing

Schulhoff S, Ilie M, Balepur N, Kahadze K, Liu A, Si C, Li Y, Gupta A, Han H, Schulhoff S (2024) The prompt report: A systematic survey of prompting techniques. arXiv preprint arXiv:240606608

Sun S, Yuan R, Cao Z, Li W, Liu P (2024) Prompt chaining or stepwise prompt? refinement in text summarization. In: Findings of the Association for Computational Linguistics ACL 2024. pp 7551–7558

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy C (2020) SciPy 10: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing website. https://www.R-project.org/. Accessed 17 April 2025

Velez YR. claudeR: Interface to Claude AI in R. GitHub website. https://github.com/yrvelez/claudeR. Accessed 17 April 2025

Kim H, Han S, Cho YS, Yoon SK, Bae KS (2018) Erratum: Development of R packages: “NonCompart” and “ncar” for noncompartmental analysis (NCA). Transl Clin Pharmacol 26(3):141. https://doi.org/10.12793/tcp.2018.26.3.141

Article  PubMed  PubMed Central  Google Scholar 

Shahin MH, Desai P, Terranova N, Guan Y, Helikar T, Lobentanzer S, Liu Q, Lu J, Madhavan S, Mo G (2025) AI-Driven applications in clinical pharmacology and translational science: insights from the ASCPT 2024 AI Preconference. Clin Transl Sci 18(4):e70203

PubMed  PubMed Central  Google Scholar 

Shahin MH, Barth A, Podichetty JT, Liu Q, Goyal N, Jin JY, Ouellet D (2024) Artificial intelligence: from buzzword to useful tool in clinical pharmacology. Clin Pharmacol Ther 115(4):698–709

CAS  PubMed  Google Scholar 

Chaturvedula A, Calad-Thomson S, Liu C, Sale M, Gattu N, Goyal N (2019) Artificial intelligence and pharmacometrics: time to embrace, capitalize, and advance? CPT: Pharmacometrics & Systems Pharmacology 8(7):440

CAS  Google Scholar 

Rozen N, Bezalel L, Elidan G, Globerson A, Daniel E (2024) Do LLMs have consistent values? arXiv preprint arXiv:240712878

Yao Y, Duan J, Xu K, Cai Y, Sun Z, Zhang Y (2024) A survey on large language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence Comput 4:100211

Google Scholar 

Das BC, Amini MH, Wu Y (2025) Security and privacy challenges of large language models: A survey. ACM Comput Surv 57(6):1–39

Google Scholar 

Comments (0)

No login
gif