Identification of oncology pharmacokinetic drivers through in vitro experiments and computational modeling

Helmlinger G et al (2019) Quantitative Systems Pharmacology: An Exemplar Model-Building Workflow With Applications in Cardiovascular, Metabolic, and Oncology Drug Development. CPT Pharmacometrics Syst Pharmacol 8(6):380–395

CAS  PubMed  PubMed Central  Google Scholar 

Zhao M (2018) In vivo pharmacokinetics and pharmacodynamics of APX001 against Candida spp. in a neutropenic disseminated candidiasis mouse model antimicrob agents chemother. https://doi.org/10.1128/AAC.02542-17

Zhao M, Lepak AJ, Marchillo K, Vanhecker J, Sanchez H, Ambrose PG, Andes DR (2019) APX001 pharmacokinetic/pharmacodynamic target determination against Aspergillus fumigatus in an in vivo model of invasive pulmonary aspergillosis. Antimicrobial Agents Chemother 63(4):10–1128

Google Scholar 

Cadwell J (2012) The Hollow Fiber Infection Model for Antimicrobial Pharmacodynamics and Pharmacokinetics. Adv Pharmacoepidem Drug Safety S1:2167–1052

Google Scholar 

Cavaleri M, Manolis E (2015) Hollow fiber system model for tuberculosis: the european medicines agency experience. Clin Infect Dis 61:S1–S4

PubMed  Google Scholar 

Romero K, Clay R, Hanna D (2015) Strategic regulatory evaluation and endorsement of the hollow fiber tuberculosis system as a novel drug development tool. Clin Infect Dis 61(Suppl 1):S5-9

PubMed  Google Scholar 

Yamazaki S, Spilker ME, Vicini P (2016) Translational modeling and simulation approaches for molecularly targeted small molecule anticancer agents from bench to bedside. Expert Opin Drug Metab Toxicol 12(3):253–265

CAS  PubMed  Google Scholar 

Quinlan CL et al (2017) Targeting -adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A. Nature Chem Biol 13(7):785

CAS  Google Scholar 

Burnham KP, Anderson DR (2004) Multimodel inference - understanding AIC and BIC in model selection. Sociological Methods Res 33(2):261–304

Google Scholar 

Banks HT, Joyner ML (2017) AIC under the framework of least squares estimation. Appl Math Lett 74:33–45

Google Scholar 

Bareschino MA et al (2007) Erlotinib in cancer treatment. Ann Oncol 18(Suppl 6):vi35-41

PubMed  Google Scholar 

Kanda R et al (2013) Erlotinib resistance in lung cancer cells mediated by integrin beta1/Src/Akt-driven bypass signaling. Cancer Res 73(20):6243–6253

CAS  PubMed  Google Scholar 

Takeda Y et al (2020) Phase I/II study of erlotinib to determine the optimal dose in patients with non-small cell lung cancer harboring only EGFR mutations. Cts-Clin Transl Sci 13(6):1150–1160

CAS  Google Scholar 

Cardoso E et al (2020) Population pharmacokinetics of erlotinib in patients with non-small cell lung cancer: its application for individualized dosing regimens in older patients. Clin Ther 42(7):1302–1316

Google Scholar 

Li JY et al (2016) Preclinical PK/PD model for combined administration of erlotinib and sunitinib in the treatment of A549 human NSCLC xenograft mice. Acta Pharmacol Sin 37(7):930–940

CAS  PubMed  PubMed Central  Google Scholar 

Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441(7092):424–430

CAS  PubMed  Google Scholar 

Portet S (2020) A primer on model selection using the Akaike Information Criterion. Infect Dis Model 5:111–128

PubMed  PubMed Central  Google Scholar 

Tabernero J et al (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: A phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26(10):1603–1610

CAS  PubMed  Google Scholar 

O’Donnell A et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26(10):1588–1595

CAS  PubMed  Google Scholar 

Sritharan S, Sivalingam N (2021) A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci 278

Pérez-Blanco JS et al (2016) Population pharmacokinetics of doxorubicin and doxorubicinol in patients diagnosed with non-Hodgkin’s lymphoma. Br J Clin Pharmacol 82(6):1517–1527

PubMed  PubMed Central  Google Scholar 

Legha SS et al (1982) Adriamycin therapy by continuous intravenous-infusion in patients with metastatic breast-cancer. Cancer 49(9):1762–1766

CAS  PubMed  Google Scholar 

Guerrero YA et al (2020) A microfluidic perfusion platform for in vitro analysis of drug pharmacokinetic-pharmacodynamic (PK-PD) relationships. AAPS J 22(2):53. https://doi.org/10.1208/s12248-020-0430-y

Ishisaka T et al (2006) A precise pharmacodynamic study showing the advantage of a marked reduction in cardiotoxicity in continuous infusion of doxorubicin. Leukemia Lymphoma 47(8):1599-1607.25

CAS  PubMed  Google Scholar 

Planken S et al (2017) Discovery of -((3,4)-4-Fluoro-1-(6-((3-methoxy-1-methyl-1-pyrazol-4-yl)amino)-9-methyl-9-purin-2-yl)pyrrolidine-3-yl)acrylamide (PF-06747775) through Structure-Based Drug Design: A High Affinity Irreversible Inhibitor Targeting Oncogenic EGFR Mutants with Selectivity over Wild-Type EGFR. J Med Chem 60(7):3002–3019

CAS  PubMed  Google Scholar 

Cross DAE et al (2014) AZD9291, an Irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4(9):1046–1061

CAS  PubMed  PubMed Central  Google Scholar 

Chen EP et al (2024) Model-based virtual PK/PD exploration and machine learning approach to define PK drivers in early drug discovery. J Med Chem 67(5):3727–3740

CAS  PubMed  Google Scholar 

Drusano GL (2007) Pharmacokinetic optimisation of β-lactams for the treatment of ventilator-associated pneumonia. Eur Respir Rev 16(103):45–49

Google Scholar 

Rybak MJ (2006) Pharmacodynamics: Relation to antimicrobial resistance. Am J Infect Control 34(5):S38–S45

PubMed  Google Scholar 

Rodríguez-Gascón A, Solinís MÁ, Isla A (2021) The role of PK/PD analysis in the development and evaluation of antimicrobials. Pharm 13(6):833. https://doi.org/10.3390/pharmaceutics13060833

Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10

CAS  PubMed  Google Scholar 

Committee for Medicinal Products for Human Use (2022) Guideline on the evaluation of medicinal products indicated for the treatment of bacterial infections. European Medicines Agency

Chan JR et al (2024) Current practices for QSP model assessment: an IQ consortium survey. J Pharmacokinet Pharmacodyn 51(5):543–555. https://doi.org/10.1007/s10928-022-09811-1

Demetri GD et al (2009) Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res 15(18):5902–5909

CAS  PubMed  PubMed Central  Google Scholar 

Begg AC et al (1985) A method to measure the duration of DNA-synthesis and the potential doubling time from a single sample. Cytometry 6(6):620–626

CAS  PubMed  Google Scholar 

Newburger AE, Weinstein G (1980) Cell-proliferation patterns in human-malignant melanoma. Invivo Cancer 46(2):308–313

CAS  Google Scholar 

Rew DA, Wilson GD (2000) Cell production rates in human tissues and tumours and their significance Part II: clinical data. Eur J Surg Oncol 26(4):405–417

CAS  PubMed  Google Scholar 

Wilson GD et al (1988) Measurement of cell-kinetics in human-tumors invivo using bromodeoxyuridine incorporation and flow-cytometry. Br J Cancer 58(4):423–431

CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif