Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, et al. Are mast cells MASTers in cancer? Front Immunol. 2017;8:424. https://doi.org/10.3389/fimmu.2017.00424.
Article CAS PubMed PubMed Central Google Scholar
Maciel TT, Moura IC, Hermine O. The role of mast cells in cancers. F1000Prime Rep. 2015;7:09. https://doi.org/10.12703/P7-09.
Article CAS PubMed PubMed Central Google Scholar
Komi DEA, Redegeld FA. Role of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol. 2020;58(3):313–25. https://doi.org/10.1007/s12016-019-08753-w.
Article CAS PubMed Google Scholar
Derakhshani A, Vahidian F, Alihasanzadeh M, Mokhtarzadeh A, Lotfi Nezhad P, Baradaran B. Mast cells: a double-edged sword in cancer. Immunol Lett. 2019;209:28–35. https://doi.org/10.1016/j.imlet.2019.03.011.
Article CAS PubMed Google Scholar
Monticelli S, Leoni C. Epigenetic and transcriptional control of mast cell responses. F1000Res. 2017;6:2064. https://doi.org/10.12688/f1000research.12384.1.
Article CAS PubMed PubMed Central Google Scholar
Patnaik S, Anupriya. Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front Pharmacol. 2019;10:588. https://doi.org/10.3389/fphar.2019.00588.
Article CAS PubMed PubMed Central Google Scholar
Bennett RL, Licht JD. Targeting epigenetics in cancer. Annu Rev Pharmacol Toxicol. 2018;58:187–207. https://doi.org/10.1146/annurev-pharmtox-010716-105106.
Article CAS PubMed Google Scholar
Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol. 2013;754:3–29. https://doi.org/10.1007/978-1-4419-9967-2_1.
Article CAS PubMed PubMed Central Google Scholar
Dominguez-Gomez G, Cortez-Pedroza D, Chavez-Blanco A, Taja-Chayeb L, Hidalgo-Miranda A, Cedro-Tanda A, et al. Growth inhibition and transcriptional effects of ribavirin in lymphoma. Oncol Rep. 2019;42(3):1248–56. https://doi.org/10.3892/or.2019.7240.
Article CAS PubMed Google Scholar
Gang AO, Frosig TM, Brimnes MK, Lyngaa R, Treppendahl MB, Gronbaek K, et al. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J. 2014;4:e197. https://doi.org/10.1038/bcj.2014.14.
Article CAS PubMed PubMed Central Google Scholar
Duenas-Gonzalez A, Coronel J, Cetina L, Gonzalez-Fierro A, Chavez-Blanco A, Taja-Chayeb L. Hydralazine-valproate: a repositioned drug combination for the epigenetic therapy of cancer. Expert Opin Drug Metab Toxicol. 2014;10(10):1433–44. https://doi.org/10.1517/17425255.2014.947263.
Article CAS PubMed Google Scholar
Chavez-Blanco A, De la Cruz-Hernandez E, Dominguez GI, Rodriguez-Cortez O, Alatorre B, Perez-Cardenas E, et al. Upregulation of NKG2D ligands and enhanced natural killer cell cytotoxicity by hydralazine and valproate. Int J Oncol. 2011;39(6):1491–9. https://doi.org/10.3892/ijo.2011.1144.
Article CAS PubMed Google Scholar
Schcolnik-Cabrera A, Dominguez-Gomez G, Duenas-Gonzalez A. Comparison of DNA demethylating and histone deacetylase inhibitors hydralazine-valproate versus vorinostat-decitabine incutaneous t-cell lymphoma in HUT78 cells. Am J Blood Res. 2018;8(2):5–16.
CAS PubMed PubMed Central Google Scholar
Rodriguez-Lopez GM, Soria-Castro R, Campillo-Navarro M, Perez-Tapia SM, Flores-Borja F, Wong-Baeza I, et al. The histone deacetylase inhibitor valproic acid attenuates phospholipase Cgamma2 and IgE-mediated mast cell activation. J Leukoc Biol. 2020;108(3):859–66. https://doi.org/10.1002/JLB.3AB0320-547RR.
Article CAS PubMed Google Scholar
Soria-Castro R, Meneses-Preza YG, Rodriguez-Lopez GM, Ibarra-Sanchez A, Gonzalez-Espinosa C, Perez-Tapia SM, et al. Valproic acid restricts mast cell activation by Listeria monocytogenes. Sci Rep. 2022;12(1):15685. https://doi.org/10.1038/s41598-022-20054-5.
Article CAS PubMed PubMed Central Google Scholar
Salamanca-Ortiz H, Dominguez-Gomez G, Chavez-Blanco A, Ortega-Bernal D, Diaz-Chavez J, Gonzalez-Fierro A, et al. The inhibitory and transcriptional effects of the epigenetic repurposed drugs hydralazine and valproate in lymphoma cells. Am J Cancer Res. 2024;14(6):3068–82. https://doi.org/10.62347/IDKG8587.
Article CAS PubMed PubMed Central Google Scholar
Schcolnik-Cabrera A, Dominguez-Gomez G, Chavez-Blanco A, Ramirez-Yautentzi M, Morales-Barcenas R, Chavez-Diaz J, et al. A combination of inhibitors of glycolysis, glutaminolysis and de novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells. Oncol Lett. 2019;18(6):6909–16. https://doi.org/10.3892/ol.2019.11008.
Article CAS PubMed PubMed Central Google Scholar
Yamanegi K, Yamane J, Kobayashi K, Kato-Kogoe N, Ohyama H, Nakasho K, et al. Valproic acid cooperates with hydralazine to augment the susceptibility of human osteosarcoma cells to Fas- and NK cell-mediated cell death. Int J Oncol. 2012;41(1):83–91. https://doi.org/10.3892/ijo.2012.1438.
Article CAS PubMed Google Scholar
Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, et al. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase INHIBITOR valproic acid in cancer cell lines. Cancer Cell Int. 2006;6:2. https://doi.org/10.1186/1475-2867-6-2.
Article CAS PubMed PubMed Central Google Scholar
Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood. 2008;112(4):1269–79. https://doi.org/10.1182/blood-2008-03-147033.
Article CAS PubMed PubMed Central Google Scholar
Majorini MT, Colombo MP, Lecis D. Few, but efficient: the role of mast cells in breast cancer and other solid tumors. Cancer Res. 2022;82(8):1439–47. https://doi.org/10.1158/0008-5472.CAN-21-3424.
Article CAS PubMed PubMed Central Google Scholar
Gou L, Yue GG, Chan BC, Lau AH, Puno PT, Lau CB. Unveiling the role of mast cells in breast cancer-a case study of natural product Eriocalyxin B as an inhibitor. Phytomedicine. 2025;140:156596. https://doi.org/10.1016/j.phymed.2025.156596.
Article CAS PubMed Google Scholar
Wilk M, Liszka L, Palen P, Gabriel A, Laudanski P. Intensity of angiogenesis and mast cell infiltration in cervical intraepithelial and invasive lesions—are they correlated? Pathol Res Pract. 2010;206(4):217–22. https://doi.org/10.1016/j.prp.2009.10.005.
Tomita M, Matsuzaki Y, Onitsuka T. Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surg. 2000;69(6):1686–90. https://doi.org/10.1016/s0003-4975(00)01160-7.
Article CAS PubMed Google Scholar
Bongiorno R, Lecchi M, Botti L, Bosco O, Ratti C, Fontanella E, et al. Mast cell heparanase promotes breast cancer stem-like features via MUC1/estrogen receptor axis. Cell Death Dis. 2024;15(9):709. https://doi.org/10.1038/s41419-024-07092-9.
Article CAS PubMed PubMed Central Google Scholar
Ben S, Huang X, Shi Y, Xu Z, Xiao H. Change in cytokine profiles released by mast cells mediated by lung cancer-derived exosome activation may contribute to cancer-associated coagulation disorders. Cell Commun Signal. 2023;21(1):97. https://doi.org/10.1186/s12964-023-01110-7.
Comments (0)