Gupta S, Roy A, Dwarakanath BS. Metabolic cooperation and competition in the tumor microenvironment: implications for therapy. Frontiers Media. 2017. https://doi.org/10.3389/fonc.2017.00068.
Comito G, Ippolito L, Chiarugi P, Cirri P. Nutritional exchanges within tumor microenvironment: impact for cancer aggressiveness. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.00396.
PubMed PubMed Central Google Scholar
Nakahara R, Maeda K, Aki S, Osawa T. Metabolic adaptations of cancer in extreme tumor microenvironments. Cancer Sci. 2023. https://doi.org/10.1111/cas.15722.
PubMed PubMed Central Google Scholar
Gouirand V, Guillaumond F, Vasseur S. Influence of the tumor microenvironment on cancer cells metabolic reprogramming. Front Media. 2018. https://doi.org/10.3389/fonc.2018.00117.
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. BioMed Central. 2024. https://doi.org/10.1186/s13046-024-02994-0.
PubMed PubMed Central Google Scholar
Zhao X, Ren T, Li S, Wang Xu, Hou R, Guan Z, Liu D, Zheng J, Shi M. A new perspective on the therapeutic potential of tumor metastasis: targeting the metabolic interactions between TAMs and tumor cells. Int J Biol Sci. 2024. https://doi.org/10.7150/ijbs.99680.
PubMed PubMed Central Google Scholar
Navarro, Carla, Ortega, Ngel, Santeliz, Raquel, Garrido, Bermary, Chacn, Maricarmen, Galbn, Nstor, Vera, Ivana, Sanctis, Juan Bautista De, and Bermdez, Valmore. 2022. “Metabolic Reprogramming in Cancer Cells: emerging Molecular Mechanisms and Novel Therapeutic Approaches”. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/pharmaceutics14061303
Chen, Joseph, Lee, Hyunchul, Schmitt, Philipp, Choy, Caleb J., Miller, Donald M, Williams, B., Bearer, E., and Frieboes, H.. 2021. "Bioengineered Models to Study Microenvironmental Regulation of Glioblastoma Metabolism.". Journal of Neuropathology and Experimental Neurology. https://doi.org/10.1093/jnen/nlab092
Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nature Portfolio. 2019. https://doi.org/10.1038/s41467-019-11738-0.
Otakhor, Kelly Osayi and Soladoye, Elizabeth O.. 2024. "A review of metabolic reprogramming in cancer cells: Mechanisms and therapeutic targets". World Journal of Advanced Research and Reviews. https://doi.org/10.30574/wjarr.2024.23.1.2038
Lasorsa F, Meo NA, Di R, Monica F, Matteo T, Daniela T, Sabin O, Battaglia M, Ditonno P, Lucarelli G. Emerging hallmarks of metabolic reprogramming in prostate cancer. Multidiscip Digit Publ Inst. 2023. https://doi.org/10.3390/ijms24020910.
Allam M, Cai S, Coskun AF. Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ precis oncol. 2020;4(1):11. https://doi.org/10.1038/s41698-020-0114-1.
PubMed PubMed Central Google Scholar
Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18:884–901.
CAS PubMed PubMed Central Google Scholar
Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 2017;27:863–75.
CAS PubMed PubMed Central Google Scholar
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18:59.
PubMed PubMed Central Google Scholar
Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: Prospects and challenges. Int J Hematol. 2017;105:244–56.
Jahanban-Esfahlan R, Seidi K, Monhemi H, Adli ADF, Minofar B, Zare P, Farajzadeh D, Farajnia S, Behzadi R, Abbasi MM. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep. 2017;7:8126.
PubMed PubMed Central Google Scholar
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol. 2018;233:2982–92.
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai channels and reactive oxygen species in the tumor microenvironment. Cancers. 2019;11:457.
CAS PubMed PubMed Central Google Scholar
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018;9:117.
PubMed PubMed Central Google Scholar
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6.
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.
Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59:85–93.
Seidi K, Neubauer HA, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: implications for nano drug delivery systems. J Control Release. 2018;275:142–61.
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233:2019–31.
Abbasi MM, Helli S, Monfaredan A, Jahanban-Esfahlan R. Hesa-A improves clinical outcome of oral carcinoma by affecting p53 gene expression in vivo. Asian Pac J Cancer Prev. 2015;16:4169–72.
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Pericytes, microvasular dysfunction and chronic rejection. Transplantation. 2015;99:658.
CAS PubMed PubMed Central Google Scholar
Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003;163:1801–15.
PubMed PubMed Central Google Scholar
Birbrair, A. Pericyte biology: Development, homeostasis, and disease. In Pericyte Biology-Novel Concepts; Springer: Cham, Switzerland, 2018; pp. 1–3.
Keskin D, Kim J, Cooke VG, Wu C-C, Sugimoto H, Gu C, De Palma M, Kalluri R, LeBleu VS. Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep. 2015;10:1066–81.
CAS PubMed PubMed Central Google Scholar
Hainsworth JD, Spigel DR, Sosman JA, Burris HA III, Farley C, Cucullu H, Yost K, Hart LL, Sylvester L, Waterhouse DM, Greco FA. Treatment of advanced renal cell carcinoma with the combination bevacizumab/erlotinib/imatinib: a phase I/II trial. Clin genitourin cancer. 2007;5(7):427–32.
Nisancioglu MH, Betsholtz C, Genové G. The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Res. 2010;70:5109–15.
Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.
CAS PubMed PubMed Central Google Scholar
Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells. 2018;7(3):21.
PubMed PubMed Central Google Scholar
Hawly J, Murcar MG, Schcolnik-Cabrera A, Issa ME. Glioblastoma stem cell metabolism and immunity. Cancer Metastasis Rev. 2024;43(3):1015–35.
Pang L, Dunterman M, Xuan W, Gonzalez A, Lin Y, Hsu WH, Khan F, Hagan RS, Muller WA, Heimberger AB, Chen P. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep. 2023;42(2):112127.
CAS PubMed PubMed Central Google Scholar
Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921–5.
CAS PubMed PubMed Central Google Scholar
Dudley AC. Tumor endothelial cells. Cold Spring Harb Perspect Med. 2012;2:a006536.
PubMed PubMed Central Google Scholar
Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release. 2018;288:62–83.
Comments (0)