Feasibility of patient weight-based size-specific dose estimates for pediatric CT: a comparison with water-equivalent diameter

Kak AC, Slaney M. Principles of computerized tomographic imaging. Philadelphia: Society for Industrial and Applied Mathematics; 2001.

Book  Google Scholar 

Poosiri S, Krisanachinda A, Khamwan K. Evaluation of patient radiation dose and risk of cancer from CT examinations. Radiol Phys Technol. 2024;17(1):176–85.

Article  Google Scholar 

Brody AS, Frush DP, Huda W, Brent RL. Radiation risk to children from computed tomography. Pediatrics. 2007;120(3):677–82.

Article  Google Scholar 

Valentin J. International commission on radiological protection. Biological effects after prenatal irradiation (embryo and fetus). Ann ICRP. 2005;35(1):1–60.

Article  MathSciNet  Google Scholar 

McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiology. 2011;259(2):311–16.

Article  Google Scholar 

Nuntue C, Krisanachinda A, Khamwan K. Optimization of a low-dose 320-slice multi-detector computed tomography chest protocol using a Phantom. Asian Biomed (Res Rev News). 2016;10(3):269–76.

Google Scholar 

Boone JM. Reply to comment on the ‘report of AAPM TG 204: Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations’ [AAPM report 204, 2011]. Med Phys. 2012;39(7):4615–16.

Article  Google Scholar 

Seibert JA, Moore WA, Brady SL. Dose is not always what it Seems: where very misleading values can result from volume CT dose index and dose length product. J Am Coll Radiol. 2014;11(3):233–37.

Article  Google Scholar 

Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258(1):236–42.

Article  Google Scholar 

Christner JA, Braun NN, Jacobsen MC, Carter RE, Kofler JM, McCollough CH. Size-specific dose estimates for adult patients at CT of the torso. Radiology. 2012;265(3):841–47.

Article  Google Scholar 

Waszczuk ŁA, Majewska N, Szymańska A, Krauze J, Ślusarczyk-Kacprzyk W, Trzebiński R. Size-specific dose estimates for evaluation of individual patient dose in CT protocol for renal colic. AJR Am J Roentgenol. 2015;205(1):100–05.

Article  Google Scholar 

Ruenjit S, Siricharoen P, Khamwan K. Automated size-specific dose estimates framework in thoracic CT using convolutional neural network based on U‐Net model. J Appl Clin Med Phys. 2024;25(3):e14283.

Article  Google Scholar 

McCollough C, Leng S, Yu L, Cody D, Boone J, McNitt-Gray M. Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep. 2014;6.

Leng S, Shiung M, Duan X, Yu L, Zhang Y, McCollough CH. Size-specific dose estimates for chest, abdominal, and pelvic CT: effect of intrapatient variability in Water-equivalent diameter. Radiology. 2015;276(1):184–90.

Article  Google Scholar 

Cheng PM. Automated Estimation of abdominal effective diameter for body size normalization of CT dose. J Digit Imaging. 2013;26:406–11.

Article  Google Scholar 

Christianson O, Chen JJ, Yang K, Li X, Bruesewitz M, Primak AN, et al. Automated size-specific CT dose monitoring program: assessing variability in CT dose. Med Phys. 2012;39(11):7131–39.

Article  Google Scholar 

Ikuta I, Kodama Y, Miki Y, Ohno Y, Koyama H, Kanematsu M, et al. Estimating patient dose from x-ray tube output metrics: automated measurement of patient size from CT images enables large-scale size-specific dose estimates. Radiology. 2014;270(2):472–80.

Article  Google Scholar 

Khawaja RDA, Singh S, Aran S, Siewert B, Abujudeh H. Simplifying size-specific radiation dose estimates in pediatric CT. AJR Am J Roentgenol. 2015;204(1):167–76.

Article  Google Scholar 

Iriuchijima A, Nishino R, Kurabayashi T, Yoshioka K. Simple method of size-specific dose estimates calculation from patient weight on computed tomography. Radiat Prot Dosimetry. 2018;178(2):208–12.

Article  Google Scholar 

Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. 6th ed. Hoboken (NJ): Wiley; 2021.

Google Scholar 

Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763–68.

Article  Google Scholar 

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–10.

Article  Google Scholar 

Comments (0)

No login
gif