-Validation and reliability of knee kinematics and gait analysis using flexible wearable sensors

InformedHealth.org. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006. In brief: How does the knee work? [Updated 2021 Aug 24]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK561512/

Williams NH, Amoakwa E, Burton K, Hendry M, Lewis R, Jones J, et al. The hip and knee book: developing an active management booklet for hip and knee osteoarthritis. Br J Gen Pract. 2010;60(571):e64–82.

Article  Google Scholar 

Kornuijt A, de Kort GJL, Das D, Lenssen AF, van der Weegen W. Recovery of knee range of motion after total knee arthroplasty in the first postoperative weeks: poor recovery can be detected early. Musculoskelet Surg. 2019;103(3):289–97.

Article  Google Scholar 

Stasi SD, Myer GD, Hewett TE. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2013;43(11):777–A11.

Article  Google Scholar 

Bazett-Jones DM, Neal BS, Legg C, Hart HF, Collins NJ, Barton CJ. Kinematic and kinetic gait characteristics in people with patellofemoral pain: a systematic review and meta-analysis. Sports Med. 2023;53(2):519–47.

Article  Google Scholar 

Hutchison L, Grayson J, Hiller C, D'Souza N, Kobayashi S, Simic M. Relationship between knee biomechanics and pain in people with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res. 2023;75(6):1351–61.

Article  Google Scholar 

di Biase L, Di Santo A, Caminiti ML, De Liso A, Shah SA, Ricci L, et al. Gait analysis in parkinson’s disease: an overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors. 2020;20(12):3529.

Article  Google Scholar 

Cacciola G, Giustra F, Bosco F, Sabatini L, Risitano S, De Meo F, et al. Long-term hollow-up of medial pivot total knee arthroplasty: a systematic review of the current evidence. Prosthesis. 2023;5(3):622–34.

Article  Google Scholar 

Merriaux P, Dupuis Y, Boutteau R, Vasseur P, Savatier X. A study of Vicon system positioning performance. Sensors. 2017;17(7):1591.

Article  Google Scholar 

Lamkin-Kennard KA, Popovic MB. Sensors: natural and synthetic sensors. In: Popovic M, editor. Biomechatronics. Academic Press, Elsevier; 2019. p. 81–107. https://doi.org/10.1016/C2016-0-04132-3.

Nardini F, Belvedere C, Sancisi N, Conconi M, Leardini A, Durante S, et al. An anatomical-based subject-specific model of in-vivo knee joint 3D kinematics from medical imaging. Appl Sci. 2020;10(6):2100.

Article  Google Scholar 

Jenny JY, Banks S, Baldairon F. Registration of knee kinematics with a navigation system: a validation study. Orthop Proc. 2021;103-B(SUPP_9):4.

Google Scholar 

Hu G, Wang W, Chen B, Zhi H, Yudi L, Shen Y, et al. Concurrent validity of evaluating knee kinematics using Kinect system during rehabilitation exercise. Med Novel Technol Devices. 2021;11:100068.

Article  Google Scholar 

Müller B, Ilg W, Giese MA, Ludolph N. Validation of enhanced Kinect sensor based motion capturing for gait assessment. PLoS One. 2017;12(4):e0175813.

Article  Google Scholar 

Eichelberger P, Ferraro M, Minder U, Denton T, Blasimann A, Krause F, et al. Analysis of accuracy in optical motion capture – a protocol for laboratory setup evaluation. J Biomech. 2016;49(10):2085–8.

Article  Google Scholar 

Rose MJ, Costello KE, Eigenbrot S, Torabian K, Kumar D. Inertial measurement units and application for remote health care in hip and knee osteoarthritis: narrative review. JMIR Rehabil Assistive Technol. 2022;9(2):e33521.

Article  Google Scholar 

Oliveira N, Park J, Barrance P. Using inertial measurement unit sensor single axis rotation angles for knee and hip flexion angle calculations during gait. IEEE J Transl Eng Health Med. 2023;11:80–6.

Article  Google Scholar 

Chamila SS, Gunawardena S, Aranjan LK, Anuja PM. Use of fiber optic goniometer to objectively assess the angle and reflex time of knee jerk in professional rugby players. Gazz Med Ital. 2022;181(7–8):552–7.

Google Scholar 

Freitas MLB, Freitas WLB, Stevan SL Jr. Knee joint goniometer prototype using hall effect sensors. J Appl Instrum Control. 2020;7(1):1–8.

Article  Google Scholar 

Watson A, Sun M, Pendyal S, Zhou G. Tracknee: knee angle measurement using stretchable conductive fabric sensors. Smart Health. 2020;15:100092.

Article  Google Scholar 

Tocco JD, Carnevale A, Presti DL, Bravi M, Bressi F, Miccinilli S, et al. Wearable device based on a flexible conductive textile for knee joint movements monitoring. IEEE Sensors J. 2021;21(23):26655–64.

Article  Google Scholar 

Mohamed AA, Baba J, Beyea J, Landry J, Sexton A, McGibbon CA. Comparison of strain-gage and fiber-optic goniometry for measuring knee kinematics during activities of daily living and exercise. J Biomech Eng. 2012;134(8):084502-084502. https://doi.org/10.1115/1.4007094.

Tognetti A, Lorussi F, Mura GD, Carbonaro N, Pacelli M, Paradiso R, et al. New generation of wearable goniometers for motion capture systems. J Neuroeng Rehabil. 2014;11(1):56.

Article  Google Scholar 

Poitras I, Dupuis F, Bielmann M, Campeau-Lecours A, Mercier C, Bouyer LJ, et al. Validity and reliability of wearable sensors for joint angle estimation: a systematic review. Sensors. 2019;19(7):1555.

Article  Google Scholar 

Pinskerova V, Vavrik P. Knee anatomy and biomechanics and its relevance to knee replacement. In: Bellemans J, Ries MD, Victor J, editors. Personalized Hip and Knee Joint Replacement. Springer; 2020. p. 159–168. https://doi.org/10.1007/978-3-030-24243-5.

Zhang L, Liu G, Han B, Wang Z, Yan Y, Ma J, et al. Knee joint biomechanics in physiological conditions and how pathologies can affect it: a systematic review. Appl Bionics Biomech. 2020;2020(1):7451683.

Google Scholar 

Innocenti B. Chapter 13 - biomechanics of the knee joint. In: Innocenti B, Galbusera F, editors. Human Orthopaedic biomechanics. Academic Press; 2022. p. 239–63.

Chapter  Google Scholar 

Tarniţă D, Catană M, Tarniţă D. Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee. Romanian J Morphol Embryol. 2013;54(2):309–13.

Google Scholar 

Kirtley C, Whittle MW, Jefferson RJ. Influence of walking speed on gait parameters. J Biomed Eng. 1985;7(4):282–8.

Article  Google Scholar 

Roberts M, Mongeon D, Prince F. Biomechanical parameters for gait analysis: a systematic review of healthy human gait. Phys Ther Rehabil. 2017;4(6):10–7243. https://doi.org/10.7243/2055-2386-4-6.

McGrath T, Stirling L. Body-worn IMU-based human hip and knee kinematics estimation during treadmill walking. Sensors. 2022;22(7):2544.

Article  Google Scholar 

Bessone V, Höschele N, Schwirtz A, Seiberl W. Validation of a new inertial measurement unit system based on different dynamic movements for future in-field applications. Sports Biomech. 2022;21(6):685–700.

Article  Google Scholar 

Berner K, Cockcroft J, Morris LD, Louw Q. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration. J Bodyw Mov Ther. 2020;24(4):251–60.

Article  Google Scholar 

Rasheed F, Martin S, Tse KM. Design, kinematics and gait analysis, of prosthetic knee joints: a systematic review. Bioengineering. 2023;10(7):773.

Article  Google Scholar 

Vakanski A, Jun H-p, Paul D, Baker R. A data set of human body movements for physical rehabilitation exercises. Data. 2018;3(1):2.

Article  Google Scholar 

Ishida T, Samukawa M. Validity and reliability of a wearable goniometer sensor controlled by a mobile application for measuring knee flexion/extension angle during the gait cycle. Sensors. 2023;23(6):3266.

Article  Google Scholar 

Pacher L, Chatellier C, Vauzelle R, Fradet L. Sensor-to-segment calibration methodologies for lower-body kinematic analysis with inertial sensors: a systematic review. Sensors. 2020;20(11):3322.

Article  Google Scholar 

Ino T, Ohkoshi Y, Maeda T, Kawakami K, Suzuki S, Tohyama H. Side-to-side differences of three-dimensional knee kinematics during walking by normal subjects. J Phys Ther Sci. 2015;27(6):1803–7.

Article  Google Scholar 

Cordillet S, Bideau N, Bideau B, Nicolas G. Estimation of 3D knee joint angles during cycling using inertial sensors: accuracy of a novel sensor-to-segment calibration procedure based on pedaling motion. Sensors. 2019;19(11):2474.

Article  Google Scholar 

Rivera B, Cano C, Luis I, Elias DA. A 3D-printed knee wearable goniometer with a mobile-app interface for measuring range of motion and monitoring activities. Sensors. 2022;22(3):763.

Article  Google Scholar 

Li J-S, Tsai T-Y, Felson DT, Li G, Lewis CL. Six degree-of-freedom knee joint kinematics in obese individuals with knee pain during gait. PLoS One. 2017;12(3):e0174663.

Article  Google Scholar 

Lucchetti L, Cappozzo A, Cappello A, Croce UD. Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J Biomech. 1998;31(11):977–84.

Article  Google Scholar 

Comments (0)

No login
gif