InformedHealth.org. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006. In brief: How does the knee work? [Updated 2021 Aug 24]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK561512/
Williams NH, Amoakwa E, Burton K, Hendry M, Lewis R, Jones J, et al. The hip and knee book: developing an active management booklet for hip and knee osteoarthritis. Br J Gen Pract. 2010;60(571):e64–82.
Kornuijt A, de Kort GJL, Das D, Lenssen AF, van der Weegen W. Recovery of knee range of motion after total knee arthroplasty in the first postoperative weeks: poor recovery can be detected early. Musculoskelet Surg. 2019;103(3):289–97.
Stasi SD, Myer GD, Hewett TE. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2013;43(11):777–A11.
Bazett-Jones DM, Neal BS, Legg C, Hart HF, Collins NJ, Barton CJ. Kinematic and kinetic gait characteristics in people with patellofemoral pain: a systematic review and meta-analysis. Sports Med. 2023;53(2):519–47.
Hutchison L, Grayson J, Hiller C, D'Souza N, Kobayashi S, Simic M. Relationship between knee biomechanics and pain in people with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res. 2023;75(6):1351–61.
di Biase L, Di Santo A, Caminiti ML, De Liso A, Shah SA, Ricci L, et al. Gait analysis in parkinson’s disease: an overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors. 2020;20(12):3529.
Cacciola G, Giustra F, Bosco F, Sabatini L, Risitano S, De Meo F, et al. Long-term hollow-up of medial pivot total knee arthroplasty: a systematic review of the current evidence. Prosthesis. 2023;5(3):622–34.
Merriaux P, Dupuis Y, Boutteau R, Vasseur P, Savatier X. A study of Vicon system positioning performance. Sensors. 2017;17(7):1591.
Lamkin-Kennard KA, Popovic MB. Sensors: natural and synthetic sensors. In: Popovic M, editor. Biomechatronics. Academic Press, Elsevier; 2019. p. 81–107. https://doi.org/10.1016/C2016-0-04132-3.
Nardini F, Belvedere C, Sancisi N, Conconi M, Leardini A, Durante S, et al. An anatomical-based subject-specific model of in-vivo knee joint 3D kinematics from medical imaging. Appl Sci. 2020;10(6):2100.
Jenny JY, Banks S, Baldairon F. Registration of knee kinematics with a navigation system: a validation study. Orthop Proc. 2021;103-B(SUPP_9):4.
Hu G, Wang W, Chen B, Zhi H, Yudi L, Shen Y, et al. Concurrent validity of evaluating knee kinematics using Kinect system during rehabilitation exercise. Med Novel Technol Devices. 2021;11:100068.
Müller B, Ilg W, Giese MA, Ludolph N. Validation of enhanced Kinect sensor based motion capturing for gait assessment. PLoS One. 2017;12(4):e0175813.
Eichelberger P, Ferraro M, Minder U, Denton T, Blasimann A, Krause F, et al. Analysis of accuracy in optical motion capture – a protocol for laboratory setup evaluation. J Biomech. 2016;49(10):2085–8.
Rose MJ, Costello KE, Eigenbrot S, Torabian K, Kumar D. Inertial measurement units and application for remote health care in hip and knee osteoarthritis: narrative review. JMIR Rehabil Assistive Technol. 2022;9(2):e33521.
Oliveira N, Park J, Barrance P. Using inertial measurement unit sensor single axis rotation angles for knee and hip flexion angle calculations during gait. IEEE J Transl Eng Health Med. 2023;11:80–6.
Chamila SS, Gunawardena S, Aranjan LK, Anuja PM. Use of fiber optic goniometer to objectively assess the angle and reflex time of knee jerk in professional rugby players. Gazz Med Ital. 2022;181(7–8):552–7.
Freitas MLB, Freitas WLB, Stevan SL Jr. Knee joint goniometer prototype using hall effect sensors. J Appl Instrum Control. 2020;7(1):1–8.
Watson A, Sun M, Pendyal S, Zhou G. Tracknee: knee angle measurement using stretchable conductive fabric sensors. Smart Health. 2020;15:100092.
Tocco JD, Carnevale A, Presti DL, Bravi M, Bressi F, Miccinilli S, et al. Wearable device based on a flexible conductive textile for knee joint movements monitoring. IEEE Sensors J. 2021;21(23):26655–64.
Mohamed AA, Baba J, Beyea J, Landry J, Sexton A, McGibbon CA. Comparison of strain-gage and fiber-optic goniometry for measuring knee kinematics during activities of daily living and exercise. J Biomech Eng. 2012;134(8):084502-084502. https://doi.org/10.1115/1.4007094.
Tognetti A, Lorussi F, Mura GD, Carbonaro N, Pacelli M, Paradiso R, et al. New generation of wearable goniometers for motion capture systems. J Neuroeng Rehabil. 2014;11(1):56.
Poitras I, Dupuis F, Bielmann M, Campeau-Lecours A, Mercier C, Bouyer LJ, et al. Validity and reliability of wearable sensors for joint angle estimation: a systematic review. Sensors. 2019;19(7):1555.
Pinskerova V, Vavrik P. Knee anatomy and biomechanics and its relevance to knee replacement. In: Bellemans J, Ries MD, Victor J, editors. Personalized Hip and Knee Joint Replacement. Springer; 2020. p. 159–168. https://doi.org/10.1007/978-3-030-24243-5.
Zhang L, Liu G, Han B, Wang Z, Yan Y, Ma J, et al. Knee joint biomechanics in physiological conditions and how pathologies can affect it: a systematic review. Appl Bionics Biomech. 2020;2020(1):7451683.
Innocenti B. Chapter 13 - biomechanics of the knee joint. In: Innocenti B, Galbusera F, editors. Human Orthopaedic biomechanics. Academic Press; 2022. p. 239–63.
Tarniţă D, Catană M, Tarniţă D. Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee. Romanian J Morphol Embryol. 2013;54(2):309–13.
Kirtley C, Whittle MW, Jefferson RJ. Influence of walking speed on gait parameters. J Biomed Eng. 1985;7(4):282–8.
Roberts M, Mongeon D, Prince F. Biomechanical parameters for gait analysis: a systematic review of healthy human gait. Phys Ther Rehabil. 2017;4(6):10–7243. https://doi.org/10.7243/2055-2386-4-6.
McGrath T, Stirling L. Body-worn IMU-based human hip and knee kinematics estimation during treadmill walking. Sensors. 2022;22(7):2544.
Bessone V, Höschele N, Schwirtz A, Seiberl W. Validation of a new inertial measurement unit system based on different dynamic movements for future in-field applications. Sports Biomech. 2022;21(6):685–700.
Berner K, Cockcroft J, Morris LD, Louw Q. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration. J Bodyw Mov Ther. 2020;24(4):251–60.
Rasheed F, Martin S, Tse KM. Design, kinematics and gait analysis, of prosthetic knee joints: a systematic review. Bioengineering. 2023;10(7):773.
Vakanski A, Jun H-p, Paul D, Baker R. A data set of human body movements for physical rehabilitation exercises. Data. 2018;3(1):2.
Ishida T, Samukawa M. Validity and reliability of a wearable goniometer sensor controlled by a mobile application for measuring knee flexion/extension angle during the gait cycle. Sensors. 2023;23(6):3266.
Pacher L, Chatellier C, Vauzelle R, Fradet L. Sensor-to-segment calibration methodologies for lower-body kinematic analysis with inertial sensors: a systematic review. Sensors. 2020;20(11):3322.
Ino T, Ohkoshi Y, Maeda T, Kawakami K, Suzuki S, Tohyama H. Side-to-side differences of three-dimensional knee kinematics during walking by normal subjects. J Phys Ther Sci. 2015;27(6):1803–7.
Cordillet S, Bideau N, Bideau B, Nicolas G. Estimation of 3D knee joint angles during cycling using inertial sensors: accuracy of a novel sensor-to-segment calibration procedure based on pedaling motion. Sensors. 2019;19(11):2474.
Rivera B, Cano C, Luis I, Elias DA. A 3D-printed knee wearable goniometer with a mobile-app interface for measuring range of motion and monitoring activities. Sensors. 2022;22(3):763.
Li J-S, Tsai T-Y, Felson DT, Li G, Lewis CL. Six degree-of-freedom knee joint kinematics in obese individuals with knee pain during gait. PLoS One. 2017;12(3):e0174663.
Lucchetti L, Cappozzo A, Cappello A, Croce UD. Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J Biomech. 1998;31(11):977–84.
Comments (0)