The Estimation of the accuracy of surface-guided radiotherapy with breast deformation

Young-Afat DA, Gregorowitsch ML, van den Bongard DH, Burgmans I, van der Pol CC, Witkamp AJ, Verkooijen HM. Breast edema following breast-conserving surgery and radiotherapy: Patient-reported prevalence, determinants, and effect on health-related quality of life. JNCI Cancer Spectr. 2019;3(2):pkz011. https://doi.org/10.1093/jncics/pkz011.

Article  Google Scholar 

Bartelink H, Maingon P, Poortmans P, Weltens C, Fourquet A, Jager J, Collette L. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol. 2015;16(1):47–56. https://doi.org/10.1016/S1470-2045(14)71156-8.

Article  Google Scholar 

Kwak JY, Kim EK, Chung SY, You JK, Oh KK, Lee YH, Jung HK. Unilateral breast edema: spectrum of etiologies and imaging appearances. Yonsei Med J. 2005;46(1):1–7.

Article  Google Scholar 

Van Mourik A, Van Kranen S, Den Hollander S, Sonke JJ, van Herk M, van Vliet-Vroegindeweij C. Effects of setup errors and shape changes on breast radiotherapy. International J Radiation Oncology Biology* Phys. 2011;51557–64. https://doi.org/10.1016/j.ijrobp.2010.01.066.

Seppälä J, Vuolukka K, Virén T, Heikkilä J, Honkanen JTJ, Pandey A, Koivumäki T. Breast deformation during the course of radiotherapy: the need for an additional outer margin. Physica Med. 2019;65:1–5. https://doi.org/10.1016/j.ejmp.2019.06.001.

Article  Google Scholar 

Alderliesten T, Heemsbergen WD, Betgen A, Topolnjak R, Elkhuizen PH, van Vliet-Vroegindeweij C, Remeijer P. Breast-shape changes during radiation therapy after breast-conserving surgery. Phys Imaging Radiation Oncol. 2018;6:71–6. https://doi.org/10.1016/j.phro.2018.09.001.

Article  Google Scholar 

Carl G, Reitz D, Schönecker S, Pazos M, Freislederer P, Reiner M, Corradini S. Optical surface scanning for patient positioning in radiation therapy: A prospective analysis of 1902 fractions. Technol Cancer Res Treat. 2018;17:1533033818806002. https://doi.org/10.1177/1533033818806002.

Article  Google Scholar 

Schönecker S, Walter F, Freislederer P, Marisch C, Scheithauer H, Harbeck N, Belka C. Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the CatalystTM/Sentinel™ system for deep inspiration breath-hold (DIBH). Radiat Oncol. 2016;11:1–10. https://doi.org/10.1186/s13014-016-0592-6.

Article  Google Scholar 

Meyer J, Smith W, Geneser S, Koger B, Kalet AM, Young LA, Wootton LS. Characterizing a deformable registration algorithm for surface-guided breast radiotherapy. Med Phys. 2020;47(2):352–62. https://doi.org/10.1002/mp.13978.

Article  Google Scholar 

Walter F, Freislederer P, Belka C, Heinz C, Söhn M, Roeder F. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (Catalyst™). Radiat Oncol. 2016;11:1–8. https://doi.org/10.1186/s13014-016-0726-y.

Article  Google Scholar 

Pallotta S, Simontacchi G, Marrazzo L, Ceroti M, Paiar F, Biti G, Bucciolini M. Accuracy of a 3D laser/camera surface imaging system for setup verification of the pelvic and thoracic regions in radiotherapy treatments. Med Phys. 2013;40(1):011710. https://doi.org/10.1118/1.4770270.

Article  Google Scholar 

Fayad H, Pan T, François Clement J, Visvikis D. Correlation of respiratory motion between external patient surface and internal anatomical landmarks. Med Phys. 2011;38(6Part1):3157–64. https://doi.org/10.1118/1.3592041.

Article  Google Scholar 

Kadman B, Takemura A, Ito T, Okada N, Kojima H, Ueda S. Accuracy of patient setup positioning using surface-guided radiotherapy with deformable registration in cases of surface deformation. J Appl Clin Med Phys. 2022;23(3):e13493. https://doi.org/10.1002/acm2.13493.

Article  Google Scholar 

Hoisak JD, Pawlicki T. The role of optical surface imaging systems in radiation therapy. Semin Radiat Oncol. 2018, July;28(3):185–93. https://doi.org/10.1016/j.semradonc.2018.04.001.

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Kikinis R. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

Article  Google Scholar 

Renner A, Furtado H, Seppenwoolde Y, Birkfellner W, Georg D. (2016, March). Deformable image registration with a featurelgorithm: Implementation as a 3D Slicer extension and validation. In Medical Imaging 2016: Image Processing (Vol. 9784, pp. 1135–1140). SPIE. https://doi.org/10.1117/12.2216957

Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen‐Smith A, Higgins SA, Kügele M, Tomé WA. AAPM task group report 302: surface‐guided radiotherapy. Med Phys. 2022;49(4):e82–112. https://doi.org/10.1002/mp.15616.

Article  Google Scholar 

Lim LY, Ho PJ, Liu J, Chay WY, Tan MH, Hartman M, Li J. Determinants of breast size in Asian women. Sci Rep. 2018;8(1):1201. https://doi.org/10.1038/s41598-018-19647-5.

Article  Google Scholar 

Hannan R, Thompson RF, Chen Y, Bernstein K, Kabarriti R, Skinner W, Kalnicki S. Hypofractionated whole-breast radiation therapy: does breast size matter? Int J Radiation Oncol Biology* Phys 84*. 2012;4894–901. https://doi.org/10.1016/j.ijrobp.2012.01.007.

Moody AM, Mayles WPM, Bliss JM, A’Hern RP, Owen JR, Regan J, Yarnold JR. The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol. 1994;33(2):106–12. https://doi.org/10.1016/0167-8140(94)90098-1.

Article  Google Scholar 

Comments (0)

No login
gif