Wu X, Zhang H, Sun J, Wang S, Zhang Y. YOLO-MSRF for Lung Nodule Detection. Biomed Signal Process Control. 2024;94:106318. https://doi.org/10.1016/j.bspc.2024.106318.
Slatore C, Lareau SC, Fahy B. Staging of Lung Cancer. Am J Respir Crit Care Med. 2022;205:P17–9.
Nishino M, Schiebler ML. Advances in Thoracic Imaging: Key Developments in the Past Decade and Future Directions. Radiology. 2023;306:222536.
Lee JH, Lee D, Lu MT, Raghu VK, Park CM, Goo JM, Choi SH, Kim H. Deep learning to optimize candidate selection for lung cancer CT screening: Advancing the 2021 USPSTF recommendations. Radiology. 2022;305:209–18.
Zhang T, Wang K, Cui H, Jin Q, Cheng P, Nakaguchi T, Li C, Ning Z, Wang L, Xuan P. Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT. Phys Med Biol. 2023;68:025007.
Lin J, Yu Y, Zhang X, Wang Z, Li S. Classification of Histological Types and Stages in Non-small Cell Lung Cancer Using Radiomic Features Based on CT Images. J Digit Imaging. 2023;36:1–9.
Sugawara H, Yatabe Y, Watanabe H, Akai H, Abe O, Watanabe S-I, Kusumoto M. Radiological precursor lesions of lung squamous cell carcinoma: Early progression patterns and divergent volume doubling time between hilar and peripheral zones. Lung Cancer. 2023;176:31–7.
Halder A, Dey D, Sadhu AK. Lung nodule detection from feature engineering to deep learning in thoracic CT images: A comprehensive review. J Digit Imaging. 2020;33:655–77.
Gong J, Liu J, Hao W, Nie S, Zheng B, Wang S, Peng W. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Eur Radiol. 2020;30:1847–55.
Mei J, Cheng MM, Xu G, Wan LR, Zhang H. SANet: A Slice-Aware Network for Pulmonary Nodule Detection. IEEE Trans Pattern Anal Mach Intell. 2022;44:4374–87.
Xu R, Liu Z, Luo Y, Hu H, Shen L, Du B, Kuang K, Yang J. SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped Domain Attention. IEEE/ACM Trans Comput Biol Bioinform. 2023;20:1–13.
Su A, Fathimathul Rajeena PP, Abraham A, Stephen D. Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano Segmented CT Images. Electronics. 2023;12:14.
Mei S, Jiang H, Ma L. YOLO-lung: A Practical Detector Based on Improved YOLOv4 for Pulmonary Nodule Detection. In Proceedings of the 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 2021; pp. 1–6.
Causey J, Li K, Chen X, Dong W, Huang X. Spatial Pyramid Pooling with 3D Convolution Improves Lung Cancer Detection. IEEE/ACM Trans Comput Biol Bioinform. 2020;19:1165–72.
Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
Ragab MG, AbdulKadir SJ, Muneer A, Alqushaibi A, Sumiea EH, Qureshi R, Al-Selwi SM, Alhussian H. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access. 2024;12:57815–32. https://doi.org/10.1109/ACCESS.2024.3386826.
Huang S, Yang J, Shen N, Xu Q, Zhao Q. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective. Semin Cancer Biol. 2023;89:30–7.
Guo Z, Zhao L, Yuan J, Yu H. MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection. IEEE J Biomed Health Inform. 2022;26:2547–58.
Masood A, et al. Cloud-Based Automated Clinical Decision Support System for Detection and Diagnosis of Lung Cancer in Chest CT. IEEE J Transl Eng Health Med. 2020;8:1–7. https://doi.org/10.1109/JTEHM.2019.2955458.
Lalitha S. An automated lung cancer detection system based on machine learning algorithm. J Intell Fuzzy Syst. 2021;40(4):6355–64. https://doi.org/10.3233/JIFS-189476.
Makaju S, Prasad PWC, Alsadoon A, Singh AK, Elchouemi A. Lung Cancer Detection using CT Scan Images. Proc Comput Sci. 2018;125:107–14. https://doi.org/10.1016/j.procs.2017.12.016.
Wang W, Charkborty G. Automatic prognosis of lung cancer using heterogeneous deep learning models for nodule detection and eliciting its morphological features. Appl Intell. 2021;51(4):2471–84. https://doi.org/10.1007/s10489-020-01990-z.
Hu D, Li S, Huang Z, Wu N, Lu X. Predicting postoperative non-small cell lung cancer prognosis via long short-term relational regularization. Artif Intell Med. 2020;107:101921. https://doi.org/10.1016/j.artmed.2020.101921.
Maleki N, Zeinali Y, Niaki STA. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Syst Appl. 2021;164:113981. https://doi.org/10.1016/j.eswa.2020.113981.
Wu X, Sahoo D, Hoi SC. Recent advances in deep learning for object detection. Neurocomputing. 2020;396:39–64.
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016; pp. 779–788.
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2016; pp. 7263–7271
Ji Z, Zhao J, Liu J, Zeng X, Zhang H, Zhang X, Ganchev I. ELCT-YOLO: An Efficient One-Stage Model for Automatic Lung Tumor Detection Based on CT Images. Mathematics. 2023;11(10):2344. https://doi.org/10.3390/math11102344.
Comments (0)