A comparative analysis of YOLO models for efficient lung tumor detection using CT images

Wu X, Zhang H, Sun J, Wang S, Zhang Y. YOLO-MSRF for Lung Nodule Detection. Biomed Signal Process Control. 2024;94:106318. https://doi.org/10.1016/j.bspc.2024.106318.

Article  Google Scholar 

Slatore C, Lareau SC, Fahy B. Staging of Lung Cancer. Am J Respir Crit Care Med. 2022;205:P17–9.

Article  Google Scholar 

Nishino M, Schiebler ML. Advances in Thoracic Imaging: Key Developments in the Past Decade and Future Directions. Radiology. 2023;306:222536.

Article  Google Scholar 

Lee JH, Lee D, Lu MT, Raghu VK, Park CM, Goo JM, Choi SH, Kim H. Deep learning to optimize candidate selection for lung cancer CT screening: Advancing the 2021 USPSTF recommendations. Radiology. 2022;305:209–18.

Article  Google Scholar 

Zhang T, Wang K, Cui H, Jin Q, Cheng P, Nakaguchi T, Li C, Ning Z, Wang L, Xuan P. Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT. Phys Med Biol. 2023;68:025007.

Article  Google Scholar 

Lin J, Yu Y, Zhang X, Wang Z, Li S. Classification of Histological Types and Stages in Non-small Cell Lung Cancer Using Radiomic Features Based on CT Images. J Digit Imaging. 2023;36:1–9.

Article  Google Scholar 

Sugawara H, Yatabe Y, Watanabe H, Akai H, Abe O, Watanabe S-I, Kusumoto M. Radiological precursor lesions of lung squamous cell carcinoma: Early progression patterns and divergent volume doubling time between hilar and peripheral zones. Lung Cancer. 2023;176:31–7.

Article  Google Scholar 

Halder A, Dey D, Sadhu AK. Lung nodule detection from feature engineering to deep learning in thoracic CT images: A comprehensive review. J Digit Imaging. 2020;33:655–77.

Article  Google Scholar 

Gong J, Liu J, Hao W, Nie S, Zheng B, Wang S, Peng W. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Eur Radiol. 2020;30:1847–55.

Article  Google Scholar 

Mei J, Cheng MM, Xu G, Wan LR, Zhang H. SANet: A Slice-Aware Network for Pulmonary Nodule Detection. IEEE Trans Pattern Anal Mach Intell. 2022;44:4374–87.

Google Scholar 

Xu R, Liu Z, Luo Y, Hu H, Shen L, Du B, Kuang K, Yang J. SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped Domain Attention. IEEE/ACM Trans Comput Biol Bioinform. 2023;20:1–13.

Google Scholar 

Su A, Fathimathul Rajeena PP, Abraham A, Stephen D. Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano Segmented CT Images. Electronics. 2023;12:14.

Article  Google Scholar 

Mei S, Jiang H, Ma L. YOLO-lung: A Practical Detector Based on Improved YOLOv4 for Pulmonary Nodule Detection. In Proceedings of the 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 2021; pp. 1–6.

Causey J, Li K, Chen X, Dong W, Huang X. Spatial Pyramid Pooling with 3D Convolution Improves Lung Cancer Detection. IEEE/ACM Trans Comput Biol Bioinform. 2020;19:1165–72.

Article  Google Scholar 

Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

Ragab MG, AbdulKadir SJ, Muneer A, Alqushaibi A, Sumiea EH, Qureshi R, Al-Selwi SM, Alhussian H. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access. 2024;12:57815–32. https://doi.org/10.1109/ACCESS.2024.3386826.

Article  Google Scholar 

Huang S, Yang J, Shen N, Xu Q, Zhao Q. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective. Semin Cancer Biol. 2023;89:30–7.

Article  Google Scholar 

Guo Z, Zhao L, Yuan J, Yu H. MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection. IEEE J Biomed Health Inform. 2022;26:2547–58.

Article  Google Scholar 

Masood A, et al. Cloud-Based Automated Clinical Decision Support System for Detection and Diagnosis of Lung Cancer in Chest CT. IEEE J Transl Eng Health Med. 2020;8:1–7. https://doi.org/10.1109/JTEHM.2019.2955458.

Article  Google Scholar 

Lalitha S. An automated lung cancer detection system based on machine learning algorithm. J Intell Fuzzy Syst. 2021;40(4):6355–64. https://doi.org/10.3233/JIFS-189476.

Article  Google Scholar 

Makaju S, Prasad PWC, Alsadoon A, Singh AK, Elchouemi A. Lung Cancer Detection using CT Scan Images. Proc Comput Sci. 2018;125:107–14. https://doi.org/10.1016/j.procs.2017.12.016.

Article  Google Scholar 

Wang W, Charkborty G. Automatic prognosis of lung cancer using heterogeneous deep learning models for nodule detection and eliciting its morphological features. Appl Intell. 2021;51(4):2471–84. https://doi.org/10.1007/s10489-020-01990-z.

Article  Google Scholar 

Hu D, Li S, Huang Z, Wu N, Lu X. Predicting postoperative non-small cell lung cancer prognosis via long short-term relational regularization. Artif Intell Med. 2020;107:101921. https://doi.org/10.1016/j.artmed.2020.101921.

Article  Google Scholar 

Maleki N, Zeinali Y, Niaki STA. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Syst Appl. 2021;164:113981. https://doi.org/10.1016/j.eswa.2020.113981.

Article  Google Scholar 

Wu X, Sahoo D, Hoi SC. Recent advances in deep learning for object detection. Neurocomputing. 2020;396:39–64.

Article  Google Scholar 

Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016; pp. 779–788.

Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2016; pp. 7263–7271

Ji Z, Zhao J, Liu J, Zeng X, Zhang H, Zhang X, Ganchev I. ELCT-YOLO: An Efficient One-Stage Model for Automatic Lung Tumor Detection Based on CT Images. Mathematics. 2023;11(10):2344. https://doi.org/10.3390/math11102344.

Article  Google Scholar 

Comments (0)

No login
gif