International Agency for Research on Cancer. Cancer Today. World Health Organization. 2024. https://gco.iarc.who.int/today/. Accessed 13 Apr 2024.
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res. 2021;149:1–61.
Wong YH, Kasbollah A, Abdullah BJ, Yeong CH. Facile Preparation of samarium Carbonate-Polymethacrylate microspheres as a Neutron-Activatable radioembolic agent for hepatic radioembolization. Pharmaceutics. 2023;15(3):877.
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10(9):2993–3036.
Tan HY, Wong YH, Kasbollah A, Md Shah MN, Yahya N, Abdullah BJ, Yeong CH. Evaluation of therapeutic efficacy and imaging capabilities of 153Sm2O3-Loaded polystyrene microspheres for Intra-Tumoural radionuclide therapy of liver Cancer using Sprague-Dawley rat model. Pharmaceutics. 2023;15(2):536.
Alregib AH, Tan HY, Wong YH, Kasbollah A, Wong EH, Abdullah BJ, Perkins AC, Yeong CH. Development and physicochemical characterization of a biodegradable microspheres formulation loaded with samarium-153 and doxorubicin for chemo‐radioembolization of liver tumours. J Label Compd Radiopharm. 2023;66(10):308–20.
Reinders MT, Smits ML, van Roekel C, Braat AJ. Holmium-166 microsphere radioembolization of hepatic malignancies. In Seminars in nuclear medicine 2019 May 1 (Vol. 49, No. 3, pp. 237–43). WB Saunders.
Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev. 2008;60(12):1329–46.
Tan HY, Wong YH, Kasbollah A, Shah MN, Abdullah BJ, Perkins AC, Yeong CH. Development of neutron-activated samarium-153-loaded polystyrene microspheres as a potential theranostic agent for hepatic radioembolization. Nucl Med Commun. 2022;43(4):410–22.
Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Shah MN, Perkins AC. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol. 2020;90:55–68.
Wong YH, Tan HY, Kasbollah A, Abdullah BJ, Acharya RU, Yeong CH. Neutron-activated biodegradable samarium-153 acetylacetonate-poly-L-lactic acid microspheres for intraarterial radioembolization of hepatic tumors. World J Experimental Med. 2020;10(2):10.
Tan HY, Wong YH, Kasbollah A, Shah MN, Perkins AC, Yeong CH. Operational nuclear research reactors in the Asia-Pacific with potential for medical radionuclide production. Nucl Med Commun. 2023;44(4):227–43.
Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomaterials. 2016;65(5):255–65.
Ramanujam R, Sundaram B, Janarthanan G, Devendran E, Venkadasalam M, Milton MJ. Biodegradable Polycaprolactone nanoparticles based drug delivery systems: a short review. Biosci Biotechnol Res Asia. 2018;15(3):679–85.
Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735–40.
Reinders MTM, Smits MLJ, van Roekel C, Braat AJAT. Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med. 2019;49(3):237–43.
Bastiaannet R, Kappadath SC, Kunnen B, Braat AJ, Lam MG, de Jong HW. The physics of radioembolization. EJNMMI Phys. 2018;5:1–27.
Wei S, Li C, Li M, Xiong Y, Jiang Y, Sun H, Qiu B, Lin CJ, Wang J. Radioactive iodine-125 in tumor therapy: advances and future directions. Front Oncol. 2021;11:717180.
Dedic-Hagan J, Teh AY, Liang E, Collett N, Woo HH. Migration of a strand of four seeds in low-dose-rate brachytherapy. Case Rep. 2014;2014:bcr2014204515.
Hong D, Zhou Y, Wan X, Su H, Shao H. Brachytherapy with Iodine-125 seeds for treatment of portal vein-branch tumor thrombus in patients with hepatocellular carcinoma. BMC Cancer. 2021;21(1):1020.
Xiong J, Kwong Chian S, Li J, Liu X. Iodine-125 seed implantation for synchronous pancreatic metastases from hepatocellular carcinoma: A case report and literature review. Medicine. 2017;96(46):e8726.
Stella M, Braat AJAT, van Rooij R, de Jong HWAM, Lam MGEH. Holmium-166 radioembolization: current status and future prospective. Cardiovasc Interv Radiol. 2022;45(11):1634.
Katabathini N, Ali T. Influence of synthesis conditions on physicochemical and photocatalytic properties of rare Earth (Ho, Nd and Sm) oxides. J Mater Res Technol. 2019;9.
Klaassen NJM, Arntz MJ, Gil Arranja A, Roosen J, Nijsen JFW. The various therapeutic applications of the medical isotope holmium-166: a narrative review. EJNMMI Radiopharmacy Chem. 2019;4(1):19.
Nijsen JFW, Zonnenberg BA, Woittiez JRW, Rook DW, Swildens-van Woudenberg IA, Van Rijk PP, et al. Holmium-166 Poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of Preparation and neutron activation techniques. Eur J Nucl Med Mol Imaging. 1999;26(7):699–704.
Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17(8):1251–78.
Reinders MT, Braat AJ, van Erpecum KJ, de Bruijne J, Bruijnen RC, Sprengers D, de Man R, Vegt E, IJzermans JN, Elias SG, Lam MG. Holmium-166 radioembolisation dosimetry in HCC. Eur J Nucl Med Mol Imaging. 2025;52(3):993–1003.
Tatu SS, Kelley BM, Wong YH, Kasbollah A, Suppiah S, Phuna ZX, Kappadath SC, Yeong CH. Validation of particle and heavy ion transport code system (PHITS) in generating dose-voxel kernels for internal dosimetry calculations. Health Technol. 2025:1–1.
Tan HY, Wong YH, Kasbollah A, Shah MN, Abdullah BJ, Perkins AC, Yeong CH. Biodistribution and long-term toxicity of neutron-activated Samarium-153 oxide-loaded polystyrene microspheres in healthy rats. Nucl Med Biol. 2025:109026.
Comments (0)