Leveraging digital technologies to enhance patient safety

Slawomirski L, Auraaen A, Klazinga N. The economics of patient safety. Paris: Organisation for Economic Co-Operation and Development; 2017.

Google Scholar 

Aydemir, A., & Koç, Z. (2023). Patient safety culture and attitudes among emergency care unit nurses in Türkiye. Eastern Mediterranean Health Journal, 29(3):195–204. https://doi.org/10.26719/emhj.23.026

Griffiths P, Dall’Ora C. Nurse staffing and patient safety in acute hospitals: Cassandra calls again? BMJ Quality and Safety. 2023;32(5):241–3. https://doi.org/10.1136/bmjqs-2022-015578.

Article  Google Scholar 

Hodkinson A, Tyler N, Ashcroft DM, Keers RN, Khan K, Phipps D, Abuzour A, Bower P, Avery A, Campbell S, Panagioti M. Preventable medication harm across health care settings: a systematic review and meta-analysis. BMC Med. 2020;18(1):1–13. https://doi.org/10.1186/s12916-020-01774-9.

Article  Google Scholar 

Newman-Toker DE, Nassery N, Schaffer AC, Yu-Moe CW, Clemens GD, Wang Z, Zhu Y, Saber Tehrani AS, Fanai M, Hassoon A, Siegal D. Burden of serious harms from diagnostic error in the USA. BMJ Qual Saf. 2023;33(2):109–20. https://doi.org/10.1136/bmjqs-2021-014130.

Article  Google Scholar 

WHO. (2022). Medication Without Harm – Global Patient Safety Challenge.

Churpek MM, Adhikari R, Edelson DP. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation. 2016;102:1–5. https://doi.org/10.1016/j.resuscitation.2016.02.005.

Article  Google Scholar 

Astier A, Carlet J, Hoppe-Tichy T, Jacklin A, Jeanes A, McManus S, Pletz MW, Seifert H, Fitzpatrick R. What is the role of technology in improving patient safety? A French, German and UK healthcare professional perspective. Journal of Patient Safety and Risk Management. 2020;25(6):219–24.

Article  Google Scholar 

Flott K, Maguire J, Phillips N. Digital safety: the next frontier for patient safety. Future Healthcare Journal. 2021;8(3):e598–601.

Article  Google Scholar 

Schneider EC, Ridgely MS, Meeker D, Hunter LE, Khodyakov D, Rudin RS. Promoting patient safety through effective health information technology risk management. Rand Health Quarterly. 2014;4(3):7.

Google Scholar 

Chang Y-H, Lin Y-C, Huang F-W, Chen D-M, Chung Y-T, Chen W-K, Wang CCN. Using machine learning and natural language processing in triage for prediction of clinical disposition in the emergency department. BMC Emerg Med. 2024;24(1):237. https://doi.org/10.1186/s12873-024-01152-1.

Article  Google Scholar 

Choi A, Choi SY, Chung K, Chung HS, Song T, Choi B, Kim JH. Development of a machine learning-based clinical decision support system to predict clinical deterioration in patients visiting the emergency department. Sci Rep. 2023;13(1):1–10. https://doi.org/10.1038/s41598-023-35617-3.

Article  Google Scholar 

Porto BM, Fogliatto FS. Improving triage performance in emergency departments using machine learning and natural language processing: a systematic review. BMC Emerg Med. 2024;24(1):219. https://doi.org/10.1186/s12873-024-01135-2.

Article  Google Scholar 

Eloranta S, Boman M. Predictive models for clinical decision making: Deep dives in practical machine learning. J Intern Med. 2022;292(2):278–95. https://doi.org/10.1111/joim.13483.

Article  Google Scholar 

Tyler, S., Olis, M., Aust, N., Patel, L., Simon, L., Triantafyllidis, C., Patel, V., Lee, D. W., Ginsberg, B., Ahmad, H., & Jacobs, R. J. (2024). Use of Artificial Intelligence in Triage in Hospital Emergency Departments: A Scoping Review. Cureus, 16(5). https://doi.org/10.7759/cureus.59906

Da’Costa A, Teke J, Origbo JE, Osonuga A, Egbon E, Olawade DB. AI-driven triage in emergency departments: A review of benefits, challenges, and future directions. International Journal of Medical Informatics. 2025;197:105838. https://doi.org/10.1016/j.ijmedinf.2025.105838.

Article  Google Scholar 

Böhm-Hustede, A. K., Lubasch, J. S., Hoogestraat, A. T., Buhr, E., & Wulff, A. (2025). Barriers and facilitators to the implementation and adoption of computerised clinical decision support systems: an umbrella review protocol. Systematic Reviews, 14(1). https://doi.org/10.1186/s13643-024-02745-4

Jones C, Thornton J, Wyatt JC. Artificial intelligence and clinical decision support: Clinicians’ perspectives on trust, trustworthiness, and liability. Med Law Rev. 2023;31(4):501–20. https://doi.org/10.1093/medlaw/fwad013.

Article  Google Scholar 

Altmann-Richer, L. (2018). Using Predictive Analytics to Improve Health Care Demand Forecasting. November.

Niu S, Ma J, Yin Q, Wang Z, Bai L, Yang X. Modelling Patient Longitudinal Data for Clinical Decision Support: A Case Study on Emerging AI Healthcare Technologies. Inf Syst Front. 2024. https://doi.org/10.1007/s10796-024-10513-x.

Article  Google Scholar 

Duwalage KI, Burkett E, White G, Wong A, Thompson MH. Forecasting daily counts of patient presentations in Australian emergency departments using statistical models with time-varying predictors. Emerg Med Australas. 2020;32(4):618–25. https://doi.org/10.1111/1742-6723.13481.

Article  Google Scholar 

Fan B, Peng J, Guo H, Gu H, Xu K, Wu T. Accurate Forecasting of Emergency Department Arrivals With Internet Search Index and Machine Learning Models: Model Development and Performance Evaluation. JMIR Med Inform. 2022;10(7):e34504. https://doi.org/10.2196/34504.

Article  Google Scholar 

Zhao X, Lai JW, Ho AFW, Liu N, Ong MEH, Cheong KH. Predicting hospital emergency department visits with deep learning approaches. Biocybernetics and Biomedical Engineering. 2022;42(3):1051–65. https://doi.org/10.1016/j.bbe.2022.07.008.

Article  Google Scholar 

Guttmann A, Schull MJ, Vermeulen MJ, Stukel TA. Association between waiting times and short term mortality and hospital admission after departure from emergency department: Population based cohort study from Ontario, Canada. Bmj. 2011;342:7809. https://doi.org/10.1136/bmj.d2983.

Article  Google Scholar 

Morley C, Unwin M, Peterson GM, Stankovich J, Kinsman L. Emergency department crowding: A systematic review of causes, consequences and solutions. PLoS ONE. 2018;13(8):e0203316. https://doi.org/10.1371/journal.pone.0203316.

Article  Google Scholar 

Amankwah-Amoah J, Khan Z, Wood G, Knight G. COVID-19 and digitalization: The great acceleration. J Bus Res. 2021;136:602–11. https://doi.org/10.1016/j.jbusres.2021.08.011.

Article  Google Scholar 

Scarlat C, Stănciulescu GD, Panduru DA. COVID-19 pandemic as accelerator: opportunity for digital acceleration. Journal of Internet and E-Business Studies. 2022;2022:1–14.

Article  Google Scholar 

Osipov, V. S., & Skryl, T. V. (2021). Impact of digital technologies on the efficiency of healthcare delivery. In IoT in healthcare and ambient assisted living (pp. 243–261). Springer.

Alotaibi, Y. K., & Federico, F. (2017). The impact of health information technology on patient safety. Saudi Medical Journal, 38(12):1173–1180. https://doi.org/10.15537/smj.2017.12.20631

Adesina, A., Iyelolu, T., & Paul, P. (2024). Leveraging predictive analytics for strategic decision-making: Enhancing business performance through data-driven insights. World Journal of Advanced Research and Reviews, 22:1927–1934. https://doi.org/10.30574/wjarr.2024.22.3.1961

Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380(14):1347–58. https://doi.org/10.1056/nejmra1814259.

Article  Google Scholar 

Bates DW, Evans RS, Murff H, Stetson PD, Pizziferri L, Hripcsak G. Detecting adverse events using information technology. Journal of the American Medical Informatics Association : JAMIA. 2003;10(2):115–28. https://doi.org/10.1197/jamia.m1074.

Article  Google Scholar 

Giannini HM, Ginestra JC, Chivers C, Draugelis M, Hanish A, Schweickert WD, Fuchs BD, Meadows L, Lynch M, Donnelly PJ, Pavan K, Fishman NO, Hanson CW 3rd, Umscheid CA. A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice. Crit Care Med. 2019;47(11):1485–92. https://doi.org/10.1097/CCM.0000000000003891.

Article  Google Scholar 

Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Affairs (Project Hope). 2014;33(7):1123–31. https://doi.org/10.1377/hlthaff.2014.0041.

Article  Google Scholar 

Choi A, Lee K, Hyun H, Kim KJ, Ahn B, Lee KH, Hahn S, Choi SY, Kim JH. A novel deep learning algorithm for real-time prediction of clinical deterioration in the emergency department for a multimodal clinical decision support system. Sci Rep. 2024;14(1):30116. https://doi.org/10.1038/s41598-024-80268-7.

Article  Google Scholar 

Porto BM. Improving triage performance in emergency departments using machine learning and natural language processing: a systematic review. BMC Emerg Med. 2024;24(1):219. https://doi.org/10.1186/s12873-024-01135-2.

Article  Google Scholar 

Fernandes, M., Vieira, S. M., Leite, F., Palos, C., Finkelstein, S., & Sousa, J. M. C. (2020). Clinical Decision Support Systems for Triage in the Emergency Department using Intelligent Systems: a Review. Artificial Intelligence in Medicine, 102(November 2019), 101762. https://doi.org/10.1016/j.artmed.2019.101762

Chen, Z., Liang, N., Zhang, H., Li, H., Yang, Y., Zong, X., Chen, Y., Wang, Y., & Shi, N. (2023). Harnessing the power of clinical decision support systems: challenges and opportunities. Open Heart, 10(2). https://doi.org/10.1136/openhrt-2023-002432

Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. Npj Digital Medicine. 2020;3(1):1–10. https://doi.org/10.1038/s41746-020-0221-y.

Article  Google Scholar 

Muhiyaddin R, Abd-Alrazaq AA, Househ M, Alam T, Shah Z. The impact of Clinical Decision Support Systems (CDSS) on physicians: A scoping review. Studies in Health Technology and Informatics. 2020;272:470–3. https://doi.org/10.3233/SHTI200597.

Article  Google Scholar 

Syrowatka, A., Motala, A., Lawson, E., & Shekelle, P. (2023). Computerized Clinical Decision Support To Prevent Medication Errors and Adverse Drug Events: Rapid Review. Making Healthcare Safer IV: A Continuous Updating of Patient Safety Harms and Practices.

Zikos D, DeLellis N. CDSS-RM: a clinical decision support system reference model. BMC Med Res Methodol. 2018;18(1):137. https://doi.org/10.1186/s12874-018-0587-6.

Article  Google Scholar 

Robertson J, Moxey AJ, Newby DA, Gillies MB, Williamson M, Pearson S-A. Electronic information and clinical decision support for prescribing: state of play in Australian general practice. Fam Pract. 2011;28(1):93–101. https://doi.org/10.1093/fampra/cmq031.

Article  Google Scholar 

Singh H, Thomas EJ, Mani S, Sittig D, Arora H, Espadas D, Khan MM, Petersen LA. Timely follow-up of abnormal diagnostic imaging test results in an outpatient setting: are electronic medical records achieving their potential? Arch Intern Med. 2009;169(17):1578–86. https://doi.org/10.1001/archinternmed.2009.263.

Article  Google Scholar 

Hailey, D., Roine, R., & Ohinmaa, A. (2002). Systematic review of evidence for the benefits of telemedicine. Journal of Telemedicine and Telecare, 8(1_suppl), 1–7. https://doi.org/10.1258/1357633021937604

Filip, R., Gheorghita Puscaselu, R., Anchidin-Norocel, L., Dimian, M., & Savage, W. K. (2022). Global Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of Pandemic Measures and Problems. Journal of Personalized Medicine, 12(8). https://doi.org/10.3390/jpm12081295

Macnamara, B. N., Berber, I., Çavuşoğlu, M. C., Krupinski, E. A., Nallapareddy, N., Nelson, N. E., Smith, P. J., Wilson-Delfosse, A. L., & Ray, S. (2024). Does using artificial intelligence assistance accelerate skill decay and hinder skill development without performers’ awareness? Cognitive Research: Principles and Implications, 9(1). https://doi.org/10.1186/s41235-024-00572-8

Harada, T., Miyagami, T., Kunitomo, K., & Shimizu, T. (2021). Clinical decision support systems for diagnosis in primary care: A scoping review. International Journal of Environmental Research and Public Health, 18(16).

Comments (0)

No login
gif