Agrawal M, Jess T (2022) Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United European Gastroenterol J 10:1113–1120. https://doi.org/10.1002/ueg2.12317
Article PubMed PubMed Central Google Scholar
Ahmed S, Dewan MZ, Xu R (2014) Nuclear factor-kappaB in inflammatory bowel disease and colorectal cancer. Am J Digest Dis 1:84–96. https://e-century.us/files/ajdd/1/2/ajdd0003262
Aniwan S, Santiago P, Loftus EV, Park SH (2022) The epidemiology of inflammatory bowel disease in Asia and Asian immigrants to Western countries. United European Gastroenterol J 10:1063–1076. https://doi.org/10.1002/ueg2.12350
Article CAS PubMed PubMed Central Google Scholar
Ashton J, Boukas K, Stafford S, Cheng G, Haggarty R, Coelho F, Batra A, Afzal A, Williams P, Polak E, Beattie M, Ennis S (2022) Deleterious genetic variation across the NOD signaling pathway is associated with reduced NFKB signaling transcription and upregulation of alternative inflammatory transcripts in pediatric inflammatory bowel disease. Inflamm Bowel Dis 28:912–922. https://doi.org/10.1093/ibd/izab318
Article PubMed PubMed Central Google Scholar
Atreya I, Atreya R (2008) NF-κB in inflammatory bowel disease. JAMA Intern Med 263:591–596. https://doi.org/10.1111/j.1365-2796.2008.01953.x
Bank S, Andersen P, Burisch J (2014) Associations between functional polymorphisms in the NFκB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. Pharmacogenomics J 14:526–534. https://doi.org/10.1038/tpj.2014.19
Article CAS PubMed Google Scholar
Bank S, Julsgaard M, Osama I, Abed K, Burisch J, Brodersen J, Natalia PK, Gouliaev A, Roug S (2019) In the NF kB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Aliment Pharm Ther 49:890–903. https://doi.org/10.1111/apt.15187
Bischoff SC, Escher J, Hebuterne X, Klek S, Krznaric Z, Schneider S, Shamir R, Stardelova K, Wierdsma N, Wiskin AE (2022) ESPEN guideline clinical nutrition in inflammatory bowel disease. Nutr Hosp 39:632–653. https://doi.org/10.20960/nh.03857
Bruewer M, Samarin S, Nusrat A (2006) Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci 1072:242–252. https://doi.org/10.1196/annals.1326.017
Article CAS PubMed Google Scholar
Chen P, Chen F, Lei J, Zhou B (2021) Gut microbial metabolite urolithin B attenuates intestinal immunity function in vivo in aging mice and in vitro in HT29 cells by regulating oxidative stress and inflammatory signalling. Food Funct 12:11938–11955. https://doi.org/10.1039/D1FO02440J
Article CAS PubMed Google Scholar
Dai W, Long L, Wang X, Li S, Xu H (2022) Phytochemicals targeting Toll-like receptors 4 (TLR4) in inflammatory bowel disease. Chinese Medicine (United Kingdom) 17:53. https://doi.org/10.1186/S13020-022-00611-W
Di Stasi LC (2021) Coumarin derivatives in inflammatory bowel disease. Molecules 26:422. https://doi.org/10.3390/molecules26020422
Di Stasi LC (2023) Natural coumarin derivatives activating Nrf2 signaling pathway as lead compounds for the design and synthesis of intestinal anti-inflammatory drugs. Pharmaceuticals 16:506–511. https://doi.org/10.3390/PH16040511
Feng L, Yi S, Song P, Xu L, Wu X, Wu X, Shen Y, Sun Y, Kong L, Wu X, Xu Q (2019) Seselin ameliorates inflammation via targeting Jak2 to suppress the proinflammatory phenotype of macrophages. Br J Pharmacol 176:317. https://doi.org/10.1111/BPH.14521
Article CAS PubMed Google Scholar
Ghorbaninejad M (2019) Contribution of NOTCH signaling pathway along with TNF-α in the intestinal inflammation of ulcerative colitis. Gastroenterol Hepatol Bed Bench 12:S80–S86
PubMed PubMed Central Google Scholar
Godala M, Gaszyńska E, Zatorski H, Małecka-Wojciesko E (2022) Dietary interventions in inflammatory bowel disease. Nutrients 14:4261. https://doi.org/10.3390/nu14204261
Article CAS PubMed PubMed Central Google Scholar
Greuter T, Vavricka SR (2019) Extraintestinal manifestations in inflammatory bowel disease–epidemiology, genetics, and pathogenesis. Expert Rev Gastroenterol Hepatol 13:307–317. https://doi.org/10.1080/17474124.2019.1574569
Article CAS PubMed Google Scholar
Guan Q (2019) A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. https://doi.org/10.1155/2019/7247238
Article PubMed PubMed Central Google Scholar
Hang S, Wu W, Wang Y, Sheng R, Fang Y, Guo R (2022) Daphnetin, a coumarin in genus Stellera chamaejasme Linn: chemistry, bioactivity and therapeutic potential. Chem Biodivers 19:e202200261. https://doi.org/10.1002/cbdv.202200261
Article CAS PubMed Google Scholar
Hassanein EHM, Sayed AM, Hussein OE, Mahmoud AM (2020) Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway. Oxid Med Cell Longev. 1675957. https://doi.org/10.1155/2020/1675957
Hossen I, Hua W, Ting L, Mehmood A, Jingyi S, Duoxia X, Yanping C, Hongqing W, Zhipeng G, Kaiqi Z (2020) Phytochemicals and inflammatory bowel disease: a review. Crit Rev Food Sci Nutr 60:1321–1345. https://doi.org/10.1080/10408398.2019.1570913
Article CAS PubMed Google Scholar
Jiang T, Shi X, Yan Z, Wang X, Gun S (2019) Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp Ther Med 18:2160. https://doi.org/10.3892/ETM.2019.7820
Article CAS PubMed PubMed Central Google Scholar
Jiang Y, Fang H, Lin S, Chen Y, Fu Y, Tu Y, Li Q, Hui Z (2023) Imperatorin inhibits LPS-induced bone marrow-derived macrophages activation by decreased NF-κB p65 phosphorylation. Immunopharmacol Immunotoxicol 45:581–588. https://doi.org/10.1080/08923973.2023.2196603
Article CAS PubMed Google Scholar
Kang SY, Kim YC (2007) Neuroprotective coumarins from the root of Angelica gigas: structure-activity relationships. Arch Pharm Res 30:1368–1373. https://doi.org/10.1007/BF02977358
Article CAS PubMed Google Scholar
Karim S, Madani B, Burzangi AS, Alsieni M, Bazuhair MA, Jamal M, Daghistani H, Barasheed MO, Alkreathy H, Khan MA, Khan LM (2023) Urolithin A’s antioxidative, anti-inflammatory, and antiapoptotic activities mitigate doxorubicin-induced liver injury in Wistar rats. Biomedicines 11:1125. https://doi.org/10.3390/biomedicines11041125
Article CAS PubMed PubMed Central Google Scholar
Kelsen JR, Russo P, Sullivan KE (2019) Early-onset inflammatory bowel disease. Immunol Allergy Clin North Am 39:63–79. https://doi.org/10.1016/j.iac.2018.08.008
Article PubMed PubMed Central Google Scholar
Khan S, Shehzad O, Chun J (2013) Mechanism underlying anti-hyperalgesic and anti-allodynic properties of anomalin in both acute and chronic inflammatory pain models in mice through inhibition of NF-κB, MAPKs and CREB signaling cascades. Eur J Pharmacol 718:448–458. https://doi.org/10.1016/j.ejphar.2013.07.039
Article CAS PubMed Google Scholar
Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307–317. https://doi.org/10.1038/nature10209
Article CAS PubMed PubMed Central Google Scholar
Kim SY, Chung KS, Jang SY, Han HS, Heo SW, Lee JK, Kim HJ, Shin YK, Ahn HS, Lee SH, Lee KT (2023) Hydrangenol, an active constituent of Hydrangea serrata (Thunb.) Ser. ameliorates colitis through suppression of macrophage-mediated inflammation in dextran sulfate sodium-treated mice. Food Funct 14. https://doi.org/10.1039/D3FO01243C
Koch L, Frommhold D, Buschmann K, Kuss N, Poeschl J, Ruef P (2014) LPS- and LTA-induced expression of IL-6 and TNF-α in neonatal and adult blood: role of MAPKs and NF-κB. Mediators Inflamm. https://doi.org/10.1155/2014/283126
Article PubMed PubMed Central Google Scholar
Kurach L, Kulczycka-Mamona S, Kowalczyk J, Skalicka-Wozniak K, Boguszewska-Czubara A, El Sayed N, Osmani M, Iwaniak K, Budzynska B (2021) Mechanisms of the procognitive effects of xanthotoxin and umbelliferone on LPS-induced amnesia in mice. Int J Mol Sci 22:1779. https://doi.org/10.3390/ijms22041779
Comments (0)