Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:584–588
Broberg A, Menkis A, Vasiliauskas R (2006) Kutznerides 1–4, depsipeptides from the actinomycete Kutzneria sp. 744 inhabiting mycorrhizal roots of Picea abies seedlings. J Nat Prod 69:97–102. https://doi.org/10.1021/np050378g
Article CAS PubMed Google Scholar
Ding W, Williams DR, Northcote P, Siegel MM, Tsao R, Ashcroft J, Morton GO, Alluri M, Abbanat D (1994) Pyrroindomycins, novel antibiotics produced by Streptomyces rugosporus sp. LL-42d005. I. Isolation and structure determination. J Antibiot 47:1250–1257. https://doi.org/10.7164/antibiotics.47.1250
Feng Y, Blunt JW, Cole ALJ, Munro MHG (2004) Novel cytotoxic thiodiketopiperazine derivatives from a Tilachlidium sp. J Nat Prod 67:2090–2092. https://doi.org/10.1021/np030326w
Article CAS PubMed Google Scholar
Furutani S, Ihara M, Kai K, Tanaka K, Sattelle DB, Hayashi H, Matsuda K (2017) Okaramine insecticidal alkaloids show similar activity on both exon 3c and exon 3b variants of glutamate-gated chloride channels of the larval silkworm, Bombyx mori. Neurotoxicology 60:240–244. https://doi.org/10.1016/j.neuro.2016.05.002
Article CAS PubMed Google Scholar
Furutani S, Nakatani Y, Miura Y, Ihara M, Kai K, Hayashi H, Matsuda K (2014) GluCl a target of indole alkaloid okaramines: a 25 year enigma solved. Sci Rep 4:6190. https://doi.org/10.1038/srep06190
Article CAS PubMed PubMed Central Google Scholar
Greig NH, Pei XF, Soncrant TT, Ingram DK, Brossi A (1995) Phenserine and ring C hetero-analogues: drug candidates for the treatment of Alzheimer’s disease. Med Res Rev. 15:3–31. https://doi.org/10.1002/med.2610150103
Article CAS PubMed Google Scholar
Guo Z, Ji Z, Zhang J, Deng J, Shen L, Liu W, Wu W (2010) NW-G01, a novel cyclic hexapeptide antibiotic, produced by Streptomyces alboflavus 313: II. Structural elucidation. J Antibiot 63:231–235. https://doi.org/10.1038/ja.2010.24
Guo Z, Shen L, Ji Z, Zhang J, Huang L, Wu W (2009) NW-G01, a novel cyclic hexadepsipeptide antibiotic, produced by Streptomyces alboflavus 313: I. Taxonomy, fermentation, isolation, physicochemical properties and antibacterial activities. J Antibiot 62:201–205. https://doi.org/10.1038/ja.2009.15
Inoue M, Sumii Y, Shibata N (2020) Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5:10633–10640. https://doi.org/10.1021/acsomega.0c00830
Article CAS PubMed PubMed Central Google Scholar
Ji Z, Wei S, Fan L, Wu W (2012) Three novel cyclic hexapeptides from Streptomyces alboflavus 313 and their antibacterial activity. Eur J Med Chem 50:296–303. https://doi.org/10.1016/j.ejmech.2012.02.008
Article CAS PubMed Google Scholar
Jiang Y, Liu D, Zhang L, Qin C, Li H, Yang H, Walsh PJ, Yang X (2024) Efficient construction of functionalized pyrroloindolines through cascade radical cyclization/intermolecular coupling. Chem Sci 15:2205–2210. https://doi.org/10.1039/d3sc05210a
Article CAS PubMed PubMed Central Google Scholar
Kumar Y, Goodfellow M (2008) Five new members of the Streptomyces violaceusniger 16S rRNA gene clade: Streptomyces castelarensis sp. nov., comb. nov., Streptomyces himastatinicus sp. nov., Streptomyces mordarskii sp. nov., Streptomyces rapamycinicus sp. nov. and Streptomyces ruanii sp. nov. Int J Syst Evol Microbiol 58:1369–1378. https://doi.org/10.1099/ijs.0.65408-0
Article CAS PubMed Google Scholar
Lam KS, Hesler GA, Mattei JM, Mamber SW, Forenza S, Tomita K (1990) Himastatin, a new antitumor antibiotic from streptomyces hygroscopicus: I. Taxonomy of producing organism, fermentation and biological activity. J Antibiot 43:956–960. https://doi.org/10.7164/antibiotics.43.956
Leet JE, Schroeder DR, Krishnan BS, Matson JA (1990) Himastatin, a new antitumor antibiotic from Streptomyces hygroscopicus: II. Isolation and characterization. J Antibiot 43:961–966. https://doi.org/10.7164/antibiotics.43.961
Meanwell NA (2018) Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J Med Chem 61:5822–5880. https://doi.org/10.1021/acs.jmedchem.7b01788
Article CAS PubMed Google Scholar
Mei GJ, Koay WL, Tan CXA, Lu Y (2021) Catalytic asymmetric preparation of pyrroloindolines: strategies and applications to total synthesis. Chem Soc Rev 50:5985–6012. https://doi.org/10.1039/d0cs00530d
Article CAS PubMed Google Scholar
Mei GJ, Tang X, Tasdan Y, Lu Y (2020) Enantioselective dearomatization of indoles by an azoalkene-enabled (3+2) reaction: access to pyrroloindolines. Angew Chemie Int Ed Engl 59:648–652. https://doi.org/10.1002/anie.201911686
Pohanka A, Menkis A, Levenfors J, Broberg A (2006) Low-abundance kutznerides from Kutzneria sp. 744. J Nat Prod 69:1776–1781. https://doi.org/10.1021/np0604331
Article CAS PubMed Google Scholar
Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330. https://doi.org/10.1039/b610213c
Article CAS PubMed Google Scholar
Shiono Y, Akiyama K, Hayashi H (2000) Effect of the azetidine and azocine rings of okaramine B on insecticidal activity. Biosci Biotechnol Biochem 64:1519–1521. https://doi.org/10.1271/bbb.64.1519
Article CAS PubMed Google Scholar
Shu H, Mo JN, Liu WD, Zhao J (2023) Synthesis of pyrroloindolines via N-heterocyclic carbene catalyzed dearomative amidoacylation of indole derivatives. Org Lett 25:8677–8682. https://doi.org/10.1021/acs.orglett.3c03588
Article CAS PubMed Google Scholar
Umezawa K, Ikeda Y, Uchihata Y, Naganawa H, Kondo S (2000) Chloptosin, an apoptosis-inducing dimeric cyclohexapeptide produced by Streptomyces. J Org Chem 65:459–463. https://doi.org/10.1021/jo991314b
Article CAS PubMed Google Scholar
Umezawa K, Nakazawa K, Ikeda Y, Naganawa H, Kondo S (1999) Polyoxypeptins A and B produced by Streptomyces: apoptosis-inducing cyclic depsipeptides containing the novel amino acid (2S,3R)-3-hydroxy-3-methylproline. J Org Chem 64:3034–3038. https://doi.org/10.1021/jo981512n
Article CAS PubMed Google Scholar
Wu JY, Huang LL, Fu JL, Li JY, Lin S, Yang S, Huang ZS, Wang H, Li Q (2024) N-Halosuccinimide enables cascade oxidative trifluorination and halogenative cyclization of tryptamine-derived isocyanides. Nat Commun 15:8917. https://doi.org/10.1038/s41467-024-53271-9
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016) Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev 116:422–518. https://doi.org/10.1021/acs.chemrev.5b00392
Comments (0)