Blanchfield JT, Sands DPA, Kennard CHL, Byriel KA, Kitching W (2003) Characterisation of alkaloids from some Australian Stephania (Menispermaceae) species. Phytochemistry 63:711–720. https://doi.org/10.1016/S0031-9422(03)00240-1
Article CAS PubMed Google Scholar
Chaichompoo W, Rojsitthisak P, Pabuprapap W, Siriwattanasathien Y, Yotmanee P, Haritakun W, Suksamrarn A (2021) Stephapierrines A-H, new tetrahydroprotoberberine and aporphine alkaloids from the tubers of Stephania pierrei Diels and their anti-cholinesterase activities. RSC Adv 11:21153–21169. https://doi.org/10.1039/D1RA03276C
Article CAS PubMed PubMed Central Google Scholar
Chen CY, Chang FR, Wu YC (1997) The constituents from the stems of Annona cherimola. J Chin Chem Soc 44:313–319. https://doi.org/10.1002/jccs.199700047
Cui G, Qin X, Zhang Y, Gong Z, Ge B, Zang YQ (2009) Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem. 284:28420–28429. https://doi.org/10.1074/jbc.M109.012674
Article CAS PubMed PubMed Central Google Scholar
da Cruz PEO, Costa EV, de Souza Moraesa VR, de Lima Nogueiraa PC, Vendramin ME, Barison A, Ferreira AG, Prata APdN (2011) Chemical constituents from the bark of Annona salzmannii (Annonaceae). Biochem Syst Ecol 39:872–875. https://doi.org/10.1016/j.bse.2011.06.008
Deng Y, Yu Y, Luo H, Zhang M, Qin X, Li L (2011) Antimicrobial activity of extract and two alkaloids from traditional Chinese medicinal plant Stephania dielsiana. Food Chem 124:1556–1560. https://doi.org/10.1016/j.foodchem.2010.08.011
Dimitrova P, Ivanovska N, Belenska L, Milanova V, Schwaeble W, Stover C (2012) Abrogated RANKL expression in properdin-deficient mice is associated with better outcome from collagen-antibody-induced arthritis. Arthritis Res Ther 14:R173. https://doi.org/10.1186/ar3926
Article CAS PubMed PubMed Central Google Scholar
Dimitrova P, Alipieva K, Stojanov K, Milanova V, Georgiev MI (2019) Plant-derived verbascoside and isoverbascoside regulate Toll-like receptor 2 and 4-driven neutrophils priming and activation. Phytomedicine 55:105–118. https://doi.org/10.1016/j.phymed.2018.07.013
Article CAS PubMed Google Scholar
Gan J, Shi W, Li Q, Li X, Zhao X, Tang J, Ma Y, Wang J, Gong S, Ma X, Guo J (2025) Identification and characterization of two Se6OMTs from Stephania epigaea offer novel insights into the biosynthetic pathway of cepharanthine. Metabolites 15:92. https://doi.org/10.3390/metabo15020092
Article CAS PubMed PubMed Central Google Scholar
Glover HL, Schreiner A, Dewson G, Tait SWG (2024) Mitochondria and cell death. Nat Cell Biol 26:1434–1446. https://doi.org/10.1038/s41556-024-01429-4
Article CAS PubMed Google Scholar
Johnstone R, Frew A, Smyth M (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798. https://doi.org/10.1038/nrc2465
Article CAS PubMed Google Scholar
Kim KH, Lee IK, Piao CJ, Choi SU, Lee JH, Kim YS, Lee KR (2010) Benzylisoquinoline alkaloids from the tubers of Corydalis ternata and their cytotoxicity. Bioorg Med Chem Lett 20:4487–4490. https://doi.org/10.1016/j.bmcl.2010.06.035
Article CAS PubMed Google Scholar
Knockleby J, Pradines B, Gendrot M, Mosnier J, Nguyen TT, Trinh TT, Lee H, Le PM (2020) Cytotoxic and anti-plasmodial activities of Stephania dielsiana Y.C. Wu extracts and the isolated compounds. Molecules 25:3755. https://doi.org/10.3390/molecules25163755
Article CAS PubMed PubMed Central Google Scholar
Li K, Chen X, Zhang J, Wang C, Xu Q, Hu J, Kai G, Feng Y (2022) Transcriptome analysis of Stephania tetrandra and characterization of norcoclaurine-6-O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis. Front Plant Sci 13:874583. https://doi.org/10.3389/fpls.2022.874583
Article PubMed PubMed Central Google Scholar
Liao HJ, Tsai HF, Wu CS, Chyuan IT, Hsu PN (2019) TRAIL inhibits RANK signaling and suppresses osteoclast activation via inhibiting lipid raft assembly and TRAF6 recruitment. Cell Death Dis 10:77. https://doi.org/10.1038/s41419-019-1353-3
Article CAS PubMed PubMed Central Google Scholar
Lyu X, Liu J, Liu Z, Wu Y, Zhu P, Liu C (2024) Anti-inflammatory effects of reticuline on the JAK2/STAT3/SOCS3 and p38 MAPK/NF-κB signaling pathway in a mouse model of obesity-associated asthma. Clin Res J 18:e13729. https://doi.org/10.1111/crj.13729
Pimentel JM, Zhou JY, Wu GS (2023) The role of TRAIL in apoptosis and immunosurveillance in cancer. Cancers 15:2752. https://doi.org/10.3390/cancers15102752
Article CAS PubMed PubMed Central Google Scholar
Rong L, Hu D, Wang W, Zhao R, Xu X, Jing W (2016) Alkaloids from root tubers of Stephania kwangsiensis HS Lo and their effects on proliferation and apoptosis of lung NCI-H446 cells. Biomed Res 27:893–896
Schultz H, Engel K, Gaestel M (1997) PMA-induced activation of the p42/44ERK- and p38RK-MAP kinase cascades in HL-60 cells is PKC dependent but not essential for differentiation to the macrophage-like phenotype. J Cell Physiol 173:310–318. https://doi.org/10.1002/(SICI)1097-4652(199712)173:3%3c310:AID-JCP2%3e3.0.CO;2-Q
Article CAS PubMed Google Scholar
Semwal DK, Badoni R, Semwal R, Kothiyal SK, Singh GJ, Rawat U (2010) The genus Stephania (Menispermaceae): chemical and pharmacological perspectives. J Ethnopharmacol 132:369–383. https://doi.org/10.1016/j.jep.2010.08.047
Article CAS PubMed Google Scholar
Shiiki K, Yoshikawa H, Kinoshita H, Takeda M, Ueno A, Nakajima Y, Tasaka K (2000) Potential mechanisms of resistance to TRAIL/Apo2L-induced apoptosis in human promyelocytic leukemia HL-60 cells during granulocytic differentiation. Cell Death Differ 7:939–946. https://doi.org/10.1038/sj.cdd.4400727
Article CAS PubMed Google Scholar
Shishodia G, Koul S, Dong Q, Koul HK (2018) Tetrandrine (TET) induces death receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5) and sensitizes prostate cancer cells to TRAIL-induced apoptosis. Mol Cancer Ther 17:1217–1228. https://doi.org/10.1158/1535-7163.MCT-17-1157
Article CAS PubMed PubMed Central Google Scholar
Srinivasan B, Lloyd MD (2024) Dose-response curves and the determination of IC50 and EC50 values. J Med Chem 67:17931–17934. https://doi.org/10.1021/acs.jmedchem.4c02052
Article CAS PubMed Google Scholar
Suzuki S, Suzuki S, Sato-Nagaoka Y, Ito C, Takahashi S (2024) Identification of triciribine as a novel myeloid cell differentiation inducer. PLoS One 19:e0303428. https://doi.org/10.1371/journal.pone.0303428
Article CAS PubMed PubMed Central Google Scholar
Takahashi S (2022) Kinase inhibitors and interferons as other myeloid differentiation inducers in leukemia therapy. Acta Haematol 145:113–121. https://doi.org/10.1159/000519769
Article CAS PubMed Google Scholar
Thi Thu Hien T, Le Ba V, Quoc Huy N, Phuong Thao N, Young Yang S, Van Thi Kim L (2023) Cytotoxic effects of aporphine alkaloids from the stems and leaves of Stephania dielsiana Y.C.Wu. Nat Prod Res 38:1864–1873. https://doi.org/10.1080/14786419.2023.2227911
Article CAS PubMed Google Scholar
Thien DD, Thuy TT, Huy NQ, Thuy HV, Thuy Duong LT, Tam NT (2018) Cytotoxic alkaloids fromStephania dielsiana. Chem Nat Compd 54:613–616. https://doi.org/10.1007/s10600-018-2426-8
Comments (0)