Chemometric Analysis of Species with Antileishmanial Activity Using Liquid Chromatography Coupled to Mass Spectrometry

Acharya AS, Kaur R, Goel AD (2017) Neglected tropical diseases—challenges and opportunities in India. Indian J Med Spec 8:102–108. https://doi.org/10.1016/J.INJMS.2017.07.006

Article  Google Scholar 

Alolga RN, Chávez León MAS, Osei-Adjei G, Onoja V (2019) GC-MS-based metabolomics, antibacterial and anti-inflammatory investigations to characterize the quality of essential oil obtained from dried Xylopia aethiopica fruits from Ghana and Nigeria. J Pharm Pharmacol 71:1544–1552. https://doi.org/10.1111/jphp.13150

Article  PubMed  CAS  Google Scholar 

Alves DS, Machado ART, Campos VAC, Oliveira DF, Carvalho GA (2016) Selection of Annonaceae species for the control of Spodoptera frugiperda (Lepidoptera: Noctuidae) and metabolic profiling of Duguetia lanceolata using nuclear magnetic resonance spectroscopy. J Econ Entomol 109:649–659. https://doi.org/10.1093/jee/tov396

Article  PubMed  CAS  Google Scholar 

Amala Dev A, Joseph SM (2021) Anticancer potential of Annona genus: a detailed review. J Indian Chem Soc 98:100231. https://doi.org/10.1016/j.jics.2021.100231

Article  CAS  Google Scholar 

Avula B, Bae JY, Majrashi T, Wu TY, Wang YH, Wang M, Ali Z, Wu YC, Khan IA (2018) Targeted and non-targeted analysis of Annonaceous alkaloids and acetogenins from Asimina and Annona species using UHPLC-QToF-MS. J Pharm Biomed Anal 159:548–566. https://doi.org/10.1016/j.jpba.2018.07.030

Article  PubMed  CAS  Google Scholar 

Brígido HPC, Correa-Barbosa J, da Silva-Silva JV, Costa EVS, Percário S, Dolabela MF (2020) Antileishmanial activity of Annona species (Annonaceae). SN Appl Sci 2:1524. https://doi.org/10.1007/s42452-020-03340-7

Article  CAS  Google Scholar 

Brito IA, Thevenard F, Costa-silva TA, Oliveira SS, Cunha RLOR, De Oliveira EA, Sartorelli P, Guadagnin RC, Romanelli MM, Tempone AG, Lago JHG (2022) Antileishmanial effects of acetylene acetogenins from seeds of Porcelia macrocarpa (Warm.) R.E. Fries (Annonaceae) and semisynthetic derivatives. Molecules 27:893. https://doi.org/10.3390/molecules27030893

Article  PubMed  PubMed Central  CAS  Google Scholar 

Callejon D, Riul T, Feitosa L, Guaratini T, Silva D, Adhikari A, Shrestha R, Marques L, Baruffi M, Lopes J, Lopes NP (2014) Leishmanicidal evaluation of tetrahydroprotoberberine and spirocyclic erythrina-alkaloids. Molecules 19:5692–5703. https://doi.org/10.3390/molecules19055692

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cortes S, Bruno de Sousa C, Morais T, Lago J, Campino L (2020) Potential of the natural products against Leishmaniasis in old world - a review of in-vitro studies. Pathog Glob Health 114:170–182. https://doi.org/10.1080/20477724.2020.1754655

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York, NY, p 1262

Cunha LMA (2009) estudo fitoquímico e biológico de Duguetia riparia (Annonaceae). Dissertação, Universidade Federal do Amazonas, Manaus

da Silva FMA, Koolen HHF, de Lima JPS, Santos DMF, Jardim IS, de Souza ADL, Pinheiro MLB (2012) Leishmanicidal activity of fractions rich in aporphine alkaloids from Amazonian Unonopsis species. Rev Bras Farmacogn 22:1368–1371. https://doi.org/10.1590/S0102-695X2012005000103

Article  CAS  Google Scholar 

Daddiouaissa D, Amid A, Abdullah Sani MS, Elnour AAM (2021) Evaluation of metabolomics behavior of human colon cancer HT29 cell lines treated with ionic liquid graviola fruit pulp extract. J Ethnopharmacol 270:113813. https://doi.org/10.1016/j.jep.2021.113813

Article  PubMed  CAS  Google Scholar 

Darwish RS, El-Banna AA, Ghareeb DA, El-Hosseny MF, Seadawy MG, Dawood HM (2022) Chemical profiling and unraveling of anti-COVID-19 biomarkers of red sage (Lantana camara L.) cultivars using UPLC-MS/MS coupled to chemometric analysis, in vitro study and molecular docking. J Ethnopharmacol 291:115038. https://doi.org/10.1016/j.jep.2022.115038

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daumerie D, Savioli L, Peters P, Crompton DWT, (2010) Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases, 1 ed., World Health Organization, France. Available in: https://www.who.int/publications/i/item/9789241564090. Accessed in 09/04/2024

de Alencar DC, da Silva FMA, de Almeida RA, Costa EV, Dutra LM, Barison A, Volpato H, Nakamura CV, Koolen HHF, de Souza ADL, Pinheiro MLB (2017) Antileishmanial activity of a new ent-kaurene diterpene glucoside isolated from leaves of Xylopia excellens R.E.Fr. (Annonaceae). Rec Nat Prod 12:190–194. https://doi.org/10.25135/rnp.16.17.06.111

de Menezes RPB, Tavares JF, Kato MJ, da Rocha Coelho FA, Martin HJ, Muratov E, dos Santos ALS, da Franca Rodrigues KA, Scotti L, Scotti MT (2022) Annonaceae terpenoids as potential leishmanicidal agents. Rev Bras Farmacogn 32:741–748. https://doi.org/10.1007/s43450-022-00296-0

Article  CAS  Google Scholar 

Doyle JA, Sauquet H, Scharaschkin T, Le Thomas A (2004) Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). Int J Plant Sci 165:S55. https://doi.org/10.1086/421068

Article  CAS  Google Scholar 

Elattar MM, Hammoda HM, Ghareeb DA, El-Hosseny MF, Seadawy MG, Celı̇k I, Darwish RS, Dawood HM (2023) An integrated strategy combining UPLC-MS/MS, chemometrics, molecular docking, and molecular dynamics simulation for metabolic profiling of onion (Allium cepa L.) cultivars and unravelling potential anti-COVID-19 metabolites. S Afr J Bot 162:885–900. https://doi.org/10.1016/j.sajb.2023.10.011

Encina CL, Martin EC, Lopez AA, Padilla IMG (2014) Biotechnology applied to Annona species: a review. Rev Bras Frutic 36:17–21. https://doi.org/10.1590/s0100-29452014000500002

Article  Google Scholar 

Ferreira C, Passos CLA, Soares DC, Costa KP, Rezende MJC, Lobão AQ, Pinto AC, Hamerski L, Saraiva EM (2017) Leishmanicidal activity of the alkaloid-rich fraction from Guatteria latifolia. Exp Parasitol 172:51–60. https://doi.org/10.1016/j.exppara.2016.12.014

Article  PubMed  CAS  Google Scholar 

Gould ER, King EFB, Menzies SK, Fraser AL, Tulloch LB, Zacharova MK, Smith TK, Florence GJ (2017) Simplifying nature: towards the design of broad spectrum kinetoplastid inhibitors, inspired by acetogenins. Bioorg Med Chem 25:6126–6136. https://doi.org/10.1016/j.bmc.2017.01.021

Article  PubMed  CAS  Google Scholar 

Guo X, Tang CC, Thomas DC, Couvreur TLP, Saunders RMK (2017) A mega-phylogeny of the Annonaceae: taxonomic placement of five enigmatic genera and support for a new tribe, Phoenicantheae. Sci Rep 7:7323. https://doi.org/10.1038/s41598-017-07252-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Koutsoni O, Karampetsou K, Dotsika E (2019) In vitro screening of antileishmanial activity of natural product compounds: determination of IC50, CC50 and SI values. Bio-Protocol 9:e3410. https://doi.org/10.21769/BioProtoc.3410

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lall N, Kishore N, Bodiba D, More G, Tshikalange E, Kikuchi H, Oshima Y (2017) Alkaloids from aerial parts of Annona senegalensis against Streptococcus mutans. Nat Prod Res 31:1944–1947. https://doi.org/10.1080/14786419.2016.1263847

Article  PubMed  CAS  Google Scholar 

Leite DOD, Nonato CF, Camilo CJ, Carvalho NKG, Nobrega MGLA, Pereira RC, Costa JGM (2020) Annona genus: traditional uses, phytochemistry and biological activities. Curr Pharm des 26:4056–4091. https://doi.org/10.2174/1381612826666200325094422

Article  PubMed  CAS  Google Scholar 

Lorenzo VP, Scotti L, da Silva Almeida JRG, Scotti MT (2020) Annonaceae family alkaloids as agents against leishmaniasis: a review and molecular docking evaluation. Curr Drug Metab 21:482–492. https://doi.org/10.2174/1389200221666200702124046

Article  PubMed  CAS  Google Scholar 

Nugraha AS, Damayanti YD, Wangchuk P, Keller PA (2019) Anti-infective and anti-cancer properties of the Annona species: their ethnomedicinal uses, alkaloid diversity, and pharmacological activities. Molecules 24:4419. https://doi.org/10.3390/molecules24234419

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ohsawa K, Atsuzawa S, Takashi Mitsu IY (1991) Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. J Pestic Sci 16:93–96. https://doi.org/10.1584/jpestics.16.93

Article  CAS  Google Scholar 

Pawar H, Puri M, Fischer Weinberger R, Madhubala R, Zilberstein D (2019) The arginine sensing and transport binding sites are distinct in the human pathogen Leishmania. PLoS Negl Trop Dis 13:e0007304. https://doi.org/10.1371/journal.pntd.0007304

Article  PubMed  PubMed Central  CAS  Google Scholar 

Quílez AM, Fernández-Arche MA, García-Giménez MD, De la Puerta R (2018) Potential therapeutic applications of the genus Annona: local and traditional uses and pharmacology. J Ethnopharmacol 225:244–270. https://doi.org/10.1016/j.jep.2018.06.014

Article  PubMed  CAS 

Comments (0)

No login
gif