Salari N, Ghasemi H, Mohammadi L et al (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 16(1):609
Article PubMed PubMed Central Google Scholar
Gómez-Vaquero C, Domínguez-Álvaro M, Seoane-Mato D et al (2025) An update in bone mineral density status in Spain: the OsteoSER study. Arch Osteoporos 20(1):37
Karaguzel G, Holick MF (2010) Diagnosis and treatment of osteopenia. Rev Endocr Metab Disord 11(4):237–251
Article CAS PubMed Google Scholar
Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767
Pisani P, Renna MD, Conversano F et al (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7(3):171–181
Article PubMed PubMed Central Google Scholar
Gu Y, Otake Y, Uemura K et al (2023) Bone mineral density estimation from a plain X-ray image by learning decomposition into projections of bone-segmented computed tomography. Med Image Anal 90:102970
Lam S, Bai C, Baldwin DR et al (2024) Current and future perspectives on computed tomography screening for lung cancer: a roadmap from 2023 to 2027 from the International Association for the Study of Lung Cancer. J Thorac Oncol 19(1):36–51
Yang JR, Liao M, Wang YL et al (2022) Opportunistic osteoporosis screening using chest CT with artificial intelligence. Osteoporos Int 33(12):2547–2561
Budoff MJ, Malpeso JM, Zeb I et al (2013) Measurement of phantomless thoracic bone mineral density on coronary artery calcium CT scans acquired with various CT scanner models. Radiology 267(3):830–836
Pan YL, Shi DJ, Wang HQ et al (2020) Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol 30(7):4107–4116
Article PubMed PubMed Central Google Scholar
Elnakib A, Amer HM, Abou-Chadi FEZ (2020) Early lung cancer detection using deep learning optimization. Int J Online Biomed Eng 16(6):82–94
Salameh JP, Bossuyt PM, McGrath TA et al (2020) Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist. BMJ 370:m2632
Slart R, Punda M, Ali DS et al (2025) Updated practice guideline for dual-energy X-ray absorptiometry (DXA). Eur J Nucl Med Mol Imaging 52(2):539–563
American College of Radiology (2021) ACR–SPR–SSR practice parameter for the performance of musculoskeletal quantitative computed tomography (QCT). https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf?la=en. Accessed 30 Jan 2025
Raymond C, Jurkiewicz MT, Orunmuyi A et al (2023) The performance of machine learning approaches for attenuation correction of PET in neuroimaging: a meta-analysis. J Neuroradiol 50(3):315–326
Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536
Wu Y, Yang XP, Wang MY et al (2024) Artificial intelligence assisted automatic screening of opportunistic osteoporosis in computed tomography images from different scanners. Eur Radiol. https://doi.org/10.1007/s00330-024-11046-2
Article PubMed PubMed Central Google Scholar
Chen YC, Li YT, Kuo PC et al (2023) Automatic segmentation and radiomic texture analysis for osteoporosis screening using chest low-dose computed tomography. Eur Radiol 33(7):5097–5106
Deng L, Shuai P, Liu Y et al (2024) Diagnostic performance of radiomics for predicting osteoporosis in adults: a systematic review and meta-analysis. Osteoporos Int 35(10):1693–1707
Tong XY, Wang SG, Cheng QY et al (2024) Effect of fully automatic classification model from different tube voltage images on bone density screening: a self-controlled study. Eur J Radiol 177:111521
Tong XY, Wang SG, Zhang JY, Fan Y, Liu YJ, Wei W (2024) Automatic osteoporosis screening system using radiomics and deep learning from low-dose chest CT images. Bioengineering-Basel 11(1):50
Article PubMed PubMed Central Google Scholar
Wang S, Tong X, Fan Y et al (2024) Combining deep learning and radiomics for automated, objective, comprehensive bone mineral density assessment from low-dose chest computed tomography. Acad Radiol 31(3):1180–1188
Niu XY, Huang YL, Li XY et al (2023) Development and validation of a fully automated system using deep learning for opportunistic osteoporosis screening using low-dose computed tomography scans. Quant Imaging Med Surg 13(8):5294–5305
Article PubMed PubMed Central Google Scholar
Pan YL, Zhao FF, Cheng G et al (2023) Automated vertebral bone mineral density measurement with phantomless internal calibration in chest LDCT scans using deep learning. Br J Radiol 96(1152):20230047
Article PubMed PubMed Central Google Scholar
Cui S, Ming S, Lin Y et al (2020) Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep 10(1):13657
Article CAS PubMed PubMed Central Google Scholar
Amani F, Amanzadeh M, Hamedan M, Amani P (2024) Diagnostic accuracy of deep learning in prediction of osteoporosis: a systematic review and meta-analysis. BMC Musculoskelet Disord 25(1):991
Article PubMed PubMed Central Google Scholar
Khadivi G, Akhtari A, Sharifi F et al (2025) Diagnostic accuracy of artificial intelligence models in detecting osteoporosis using dental images: a systematic review and meta-analysis. Osteoporos Int 36(1):1–19
Xia T, Zhao B, Li B et al (2024) MRI-based radiomics and deep learning in biological characteristics and prognosis of hepatocellular carcinoma: opportunities and challenges. J Magn Reson Imaging 59(3):767–783
Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475
Article CAS PubMed Google Scholar
Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Assessment of fracture risk. Eur J Radiol 71(3):392–397
Comments (0)