Accuracy of Low-Dose Chest CT-Based Artificial Intelligence Models in Osteoporosis Detection: A Systematic Review and Meta-analysis

Salari N, Ghasemi H, Mohammadi L et al (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 16(1):609

Article  PubMed  PubMed Central  Google Scholar 

Gómez-Vaquero C, Domínguez-Álvaro M, Seoane-Mato D et al (2025) An update in bone mineral density status in Spain: the OsteoSER study. Arch Osteoporos 20(1):37

Article  PubMed  Google Scholar 

Karaguzel G, Holick MF (2010) Diagnosis and treatment of osteopenia. Rev Endocr Metab Disord 11(4):237–251

Article  CAS  PubMed  Google Scholar 

Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

Article  PubMed  Google Scholar 

Pisani P, Renna MD, Conversano F et al (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7(3):171–181

Article  PubMed  PubMed Central  Google Scholar 

Gu Y, Otake Y, Uemura K et al (2023) Bone mineral density estimation from a plain X-ray image by learning decomposition into projections of bone-segmented computed tomography. Med Image Anal 90:102970

Article  PubMed  Google Scholar 

Lam S, Bai C, Baldwin DR et al (2024) Current and future perspectives on computed tomography screening for lung cancer: a roadmap from 2023 to 2027 from the International Association for the Study of Lung Cancer. J Thorac Oncol 19(1):36–51

Article  PubMed  Google Scholar 

Yang JR, Liao M, Wang YL et al (2022) Opportunistic osteoporosis screening using chest CT with artificial intelligence. Osteoporos Int 33(12):2547–2561

Article  PubMed  Google Scholar 

Budoff MJ, Malpeso JM, Zeb I et al (2013) Measurement of phantomless thoracic bone mineral density on coronary artery calcium CT scans acquired with various CT scanner models. Radiology 267(3):830–836

Article  PubMed  Google Scholar 

Pan YL, Shi DJ, Wang HQ et al (2020) Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol 30(7):4107–4116

Article  PubMed  PubMed Central  Google Scholar 

Elnakib A, Amer HM, Abou-Chadi FEZ (2020) Early lung cancer detection using deep learning optimization. Int J Online Biomed Eng 16(6):82–94

Article  Google Scholar 

Salameh JP, Bossuyt PM, McGrath TA et al (2020) Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist. BMJ 370:m2632

Article  PubMed  Google Scholar 

Slart R, Punda M, Ali DS et al (2025) Updated practice guideline for dual-energy X-ray absorptiometry (DXA). Eur J Nucl Med Mol Imaging 52(2):539–563

Article  PubMed  Google Scholar 

American College of Radiology (2021) ACR–SPR–SSR practice parameter for the performance of musculoskeletal quantitative computed tomography (QCT). https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf?la=en. Accessed 30 Jan 2025

Raymond C, Jurkiewicz MT, Orunmuyi A et al (2023) The performance of machine learning approaches for attenuation correction of PET in neuroimaging: a meta-analysis. J Neuroradiol 50(3):315–326

Article  PubMed  Google Scholar 

Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

Article  PubMed  Google Scholar 

Wu Y, Yang XP, Wang MY et al (2024) Artificial intelligence assisted automatic screening of opportunistic osteoporosis in computed tomography images from different scanners. Eur Radiol. https://doi.org/10.1007/s00330-024-11046-2

Article  PubMed  PubMed Central  Google Scholar 

Chen YC, Li YT, Kuo PC et al (2023) Automatic segmentation and radiomic texture analysis for osteoporosis screening using chest low-dose computed tomography. Eur Radiol 33(7):5097–5106

Article  PubMed  Google Scholar 

Deng L, Shuai P, Liu Y et al (2024) Diagnostic performance of radiomics for predicting osteoporosis in adults: a systematic review and meta-analysis. Osteoporos Int 35(10):1693–1707

Article  PubMed  Google Scholar 

Tong XY, Wang SG, Cheng QY et al (2024) Effect of fully automatic classification model from different tube voltage images on bone density screening: a self-controlled study. Eur J Radiol 177:111521

Article  PubMed  Google Scholar 

Tong XY, Wang SG, Zhang JY, Fan Y, Liu YJ, Wei W (2024) Automatic osteoporosis screening system using radiomics and deep learning from low-dose chest CT images. Bioengineering-Basel 11(1):50

Article  PubMed  PubMed Central  Google Scholar 

Wang S, Tong X, Fan Y et al (2024) Combining deep learning and radiomics for automated, objective, comprehensive bone mineral density assessment from low-dose chest computed tomography. Acad Radiol 31(3):1180–1188

Article  PubMed  Google Scholar 

Niu XY, Huang YL, Li XY et al (2023) Development and validation of a fully automated system using deep learning for opportunistic osteoporosis screening using low-dose computed tomography scans. Quant Imaging Med Surg 13(8):5294–5305

Article  PubMed  PubMed Central  Google Scholar 

Pan YL, Zhao FF, Cheng G et al (2023) Automated vertebral bone mineral density measurement with phantomless internal calibration in chest LDCT scans using deep learning. Br J Radiol 96(1152):20230047

Article  PubMed  PubMed Central  Google Scholar 

Cui S, Ming S, Lin Y et al (2020) Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep 10(1):13657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amani F, Amanzadeh M, Hamedan M, Amani P (2024) Diagnostic accuracy of deep learning in prediction of osteoporosis: a systematic review and meta-analysis. BMC Musculoskelet Disord 25(1):991

Article  PubMed  PubMed Central  Google Scholar 

Khadivi G, Akhtari A, Sharifi F et al (2025) Diagnostic accuracy of artificial intelligence models in detecting osteoporosis using dental images: a systematic review and meta-analysis. Osteoporos Int 36(1):1–19

Article  PubMed  Google Scholar 

Xia T, Zhao B, Li B et al (2024) MRI-based radiomics and deep learning in biological characteristics and prognosis of hepatocellular carcinoma: opportunities and challenges. J Magn Reson Imaging 59(3):767–783

Article  PubMed  Google Scholar 

Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475

Article  CAS  PubMed  Google Scholar 

Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Assessment of fracture risk. Eur J Radiol 71(3):392–397

Article  PubMed  Google Scholar 

Comments (0)

No login
gif