Homology-feature-assisted quantification of fibrotic lesions in computed tomography images: a proof of concept for CT image feature-based prediction for gene-expression-distribution

Travis WD, Costable U, Hansell DM et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748. https://doi.org/10.1164/rccm.201308-1483ST

Article  PubMed  PubMed Central  Google Scholar 

Kato M, Yamada T, Kataoka S, Arai Y, Miura K, Ochi Y, Ihara H, Koyama R, Sasaki S, Takahashi K (2019) Prognostic differences among patients with idiopathic interstitial pneumonias with acute exacerbation of varying pathogenesis: a retrospective study. Respir Res 20:1–14. https://doi.org/10.1186/s12931-019-1247-z

Article  CAS  Google Scholar 

Song JW, Hong SB, Lim CM, Koh Y, Kim DS (2011) Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J 37(2):356–363. https://doi.org/10.1183/09031936.00159709

Article  CAS  PubMed  Google Scholar 

Koh SY, Lee JH, Park H, Goo JM (2024) Value of CT quantification in progressive fibrosing interstitial lung disease: a deep learning approach. Eur Radiol 34(7):4195–4205. https://doi.org/10.1007/s00330-023-10483-9

Article  PubMed  Google Scholar 

George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Martinez FJ, Molyneaux PL, Renzoni EA, Richeldi L, Tomassetti S, Valenzuela C, Vancheri C, Varone F, Cottin V, Costable U (2020) Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir Med 8(9):925–934. https://doi.org/10.1016/S2213-2600(20)30355-6

Article  PubMed  Google Scholar 

Wijsenbeek M, Kreuter M, Olson A, Fischer A, Bendstrup E, Wells CD, Denton CP, Mounir B, Zouad-Lejour L, Quaresma M, Cottin V (2019) Progressive fibrosing interstitial lung diseases: current practice in diagnosis and management. Curr Med Res Opin 35(11):2015–2024. https://doi.org/10.1080/03007995.2019.1647040

Article  PubMed  Google Scholar 

Walsh SL, Sverzellati N, Devaraj A, Wells AU, Hansell DM (2012) Chronic hypersensitivity pneumonitis: high resolution computed tomography patterns and pulmonary function indices as prognostic determinants. Eur Radiol 22:1672–1679. https://doi.org/10.1007/s00330-012-2427-0

Article  PubMed  Google Scholar 

Nakane K, Takiyama A, Mori S, Matsuura N (2015) Homology-based method for detecting regions of interest in colonic digital images. Diagn Pathol 10:1–5. https://doi.org/10.1186/s13000-015-0244-x

Article  Google Scholar 

Kadoya N, Tanaka S, Kajikawa T, Tanabe S, Abe K, Nakajima Y, Yamamoto T, Takahashi N, Takeda K, Dobashi S, Takeda K, Nakane K, Jingu K (2020) Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Med Phys 47(5):2197–2205. https://doi.org/10.1002/mp.14104

Article  PubMed  Google Scholar 

Ninomiya K, Arimura H (2020) Homological radiomics analysis for prognostic prediction in lung cancer patients. Phys Med 69:90–100. https://doi.org/10.1016/j.ejmp.2019.11.026

Article  PubMed  Google Scholar 

Saltz J, Saltz M, Prasanna P, Moffitt R, Hajagos J, Bremer E, Balsamo J, Kurc T (2021) Stony brook university COVID-19 positive cases. Cancer Imaging Arch. https://doi.org/10.7937/TCIA.BBAG-2923

Article  Google Scholar 

Hugo GD, Weiss E, Sleeman WC, Balik S, Keall PJ, Lu J, Williamson JF (2016) Data from 4D lung imaging of NSCLC patients (Version 2). Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2016.ELN8YGLE

Article  Google Scholar 

Hata A, Hino T, Yanagawa M, Nishino M, Hida T, Hunninghake GM, Tomiyama N, Christiani DC, Hatabu H (2022) Interstitial lung abnormalities at CT: subtypes, clinical significance, and associations with lung cancer. Radiographics 42(7):1925–1939. https://doi.org/10.1148/rg.220073

Article  PubMed  Google Scholar 

Capaccione KM, Wang A, Lee SM, Patel N, Austin JH, Maino P, Padilla M, Salvatore MM (2021) Quantifying normal lung in pulmonary fibrosis: CT analysis and correlation with% DLCO. Clin Imaging 77:287–290. https://doi.org/10.1016/j.clinimag.2021.06.021

Article  PubMed  Google Scholar 

Robbie H, Daccord C, Chua F, Devaraj A (2017) Evaluating disease severity in idiopathic pulmonary fibrosis. Eur Respir Rev 26:145. https://doi.org/10.1183/16000617.0051-2017

Article  Google Scholar 

Hartley PG, Galvin JR, Hunninghake GW, Merchant JA, Yagla SJ, Speakman SB, Schwartz DA (1994) High-resolution CT-derived measures of lung density are valid indexes of interstitial lung disease. J Appl Physiol 76(1):271–277. https://doi.org/10.1152/jappl.1994.76.1.271

Article  CAS  PubMed  Google Scholar 

Best AC, Lynch AM, Bozic CM, Miller D, Grunwald GK, Lynch DA (2003) Quantitative CT indexes in idiopathic pulmonary fibrosis: relationship with physiologic impairment. Radiology 228(2):407–414. https://doi.org/10.1148/radiol.2282020274

Article  PubMed  Google Scholar 

Sverzellati N, Calabrò E, Chetta A, Concari G, Larici AR, Mereu M, Cobelli R, De FM, Zompatori M (2007) Visual score and quantitative CT indices in pulmonary fibrosis: relationship with physiologic impairment. Radiol Med (Torino) 112(8):1160–1172. https://doi.org/10.1007/s11547-007-0213-x

Article  CAS  PubMed  Google Scholar 

Maldonado F, Moua T, Rajagopalan S, Karwoski RA, Raghunath S, Decker PA, Hartman TE, Bartholmai BJ, Robb RA, Ryu JH (2013) Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 43(1):204–212. https://doi.org/10.1183/09031936.00071812

Article  PubMed  Google Scholar 

Wu X, Kim GH, Salisbury ML, Barber D et al (2019) Computed tomographic biomarkers in idiopathic pulmonary fibrosis. The future of quantitative analysis. Am J Respir Crit Care Med 199(1):12–21. https://doi.org/10.1164/rccm.201803-0444PP

Article  PubMed  Google Scholar 

Hansell DM, Goldin JG, King TE, Lynch DA, Richeldi L, Wells AU (2015) CT staging and monitoring of fibrotic interstitial lung diseases in clinical practice and treatment trials: a position paper from the Fleischner Society. Lancet Respir Med 3(6):483–496. https://doi.org/10.1016/S2213-2600(15)00096-X

Article  PubMed  Google Scholar 

Thillai M, Oldham JM, Ruggiero A, Kanavati F, McLellan T, Saini G, Johnson SR, Ble FX, Azim A, Ostridge K, Platt A, Belvisi M, Maher TM, Molyneaux PL (2024) Deep learning–based segmentation of computed tomography scans predicts disease progression and mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 210(4):465–472. https://doi.org/10.1164/rccm.202311-2185OC

Article  PubMed  PubMed Central  Google Scholar 

Shin B, Oh YJ, Kim J, Park SG, Lee KS, Lee HY (2024) Correlation between CT-based phenotypes and serum biomarker in interstitial lung diseases. BMC Pulm Med 24(1):523. https://doi.org/10.1186/s12890-024-03344-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pham TD (2020) A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks. Sci Rep 10(1):16942. https://doi.org/10.1038/s41598-020-74164-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta K, Bajaj V (2023) Deep learning models-based CT-scan image classification for automated screening of COVID-19. Biomed Signal Process Control 80:104268. https://doi.org/10.1016/j.bspc.2022.104268

Article  PubMed  Google Scholar 

Salama GM, Mohamed A, Abd-Ellah MK (2024) COVID-19 classification based on a deep learning and machine learning fusion technique using chest CT images. Neural Comput Appl 36(10):5347–5365. https://doi.org/10.1007/s00521-023-09346-7

Article  Google Scholar 

Anetai Y, Doi K, Takegawa H, Koike Y, Yui M, Yoshida A, Hirota K, Yoshida K, Nishio T, Kotoku J, Nakamura M, Nakamura S (2024) Diffusion equation quantification: selective enhancement algorithm for bone metastasis lesions in CT images. Phys Med Biol 69(24):245007. https://doi.org/10.1088/1361-6560/ad965c

Article  CAS  Google Scholar 

Comments (0)

No login
gif