Travis WD, Costable U, Hansell DM et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748. https://doi.org/10.1164/rccm.201308-1483ST
Article PubMed PubMed Central Google Scholar
Kato M, Yamada T, Kataoka S, Arai Y, Miura K, Ochi Y, Ihara H, Koyama R, Sasaki S, Takahashi K (2019) Prognostic differences among patients with idiopathic interstitial pneumonias with acute exacerbation of varying pathogenesis: a retrospective study. Respir Res 20:1–14. https://doi.org/10.1186/s12931-019-1247-z
Song JW, Hong SB, Lim CM, Koh Y, Kim DS (2011) Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J 37(2):356–363. https://doi.org/10.1183/09031936.00159709
Article CAS PubMed Google Scholar
Koh SY, Lee JH, Park H, Goo JM (2024) Value of CT quantification in progressive fibrosing interstitial lung disease: a deep learning approach. Eur Radiol 34(7):4195–4205. https://doi.org/10.1007/s00330-023-10483-9
George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Martinez FJ, Molyneaux PL, Renzoni EA, Richeldi L, Tomassetti S, Valenzuela C, Vancheri C, Varone F, Cottin V, Costable U (2020) Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir Med 8(9):925–934. https://doi.org/10.1016/S2213-2600(20)30355-6
Wijsenbeek M, Kreuter M, Olson A, Fischer A, Bendstrup E, Wells CD, Denton CP, Mounir B, Zouad-Lejour L, Quaresma M, Cottin V (2019) Progressive fibrosing interstitial lung diseases: current practice in diagnosis and management. Curr Med Res Opin 35(11):2015–2024. https://doi.org/10.1080/03007995.2019.1647040
Walsh SL, Sverzellati N, Devaraj A, Wells AU, Hansell DM (2012) Chronic hypersensitivity pneumonitis: high resolution computed tomography patterns and pulmonary function indices as prognostic determinants. Eur Radiol 22:1672–1679. https://doi.org/10.1007/s00330-012-2427-0
Nakane K, Takiyama A, Mori S, Matsuura N (2015) Homology-based method for detecting regions of interest in colonic digital images. Diagn Pathol 10:1–5. https://doi.org/10.1186/s13000-015-0244-x
Kadoya N, Tanaka S, Kajikawa T, Tanabe S, Abe K, Nakajima Y, Yamamoto T, Takahashi N, Takeda K, Dobashi S, Takeda K, Nakane K, Jingu K (2020) Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Med Phys 47(5):2197–2205. https://doi.org/10.1002/mp.14104
Ninomiya K, Arimura H (2020) Homological radiomics analysis for prognostic prediction in lung cancer patients. Phys Med 69:90–100. https://doi.org/10.1016/j.ejmp.2019.11.026
Saltz J, Saltz M, Prasanna P, Moffitt R, Hajagos J, Bremer E, Balsamo J, Kurc T (2021) Stony brook university COVID-19 positive cases. Cancer Imaging Arch. https://doi.org/10.7937/TCIA.BBAG-2923
Hugo GD, Weiss E, Sleeman WC, Balik S, Keall PJ, Lu J, Williamson JF (2016) Data from 4D lung imaging of NSCLC patients (Version 2). Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2016.ELN8YGLE
Hata A, Hino T, Yanagawa M, Nishino M, Hida T, Hunninghake GM, Tomiyama N, Christiani DC, Hatabu H (2022) Interstitial lung abnormalities at CT: subtypes, clinical significance, and associations with lung cancer. Radiographics 42(7):1925–1939. https://doi.org/10.1148/rg.220073
Capaccione KM, Wang A, Lee SM, Patel N, Austin JH, Maino P, Padilla M, Salvatore MM (2021) Quantifying normal lung in pulmonary fibrosis: CT analysis and correlation with% DLCO. Clin Imaging 77:287–290. https://doi.org/10.1016/j.clinimag.2021.06.021
Robbie H, Daccord C, Chua F, Devaraj A (2017) Evaluating disease severity in idiopathic pulmonary fibrosis. Eur Respir Rev 26:145. https://doi.org/10.1183/16000617.0051-2017
Hartley PG, Galvin JR, Hunninghake GW, Merchant JA, Yagla SJ, Speakman SB, Schwartz DA (1994) High-resolution CT-derived measures of lung density are valid indexes of interstitial lung disease. J Appl Physiol 76(1):271–277. https://doi.org/10.1152/jappl.1994.76.1.271
Article CAS PubMed Google Scholar
Best AC, Lynch AM, Bozic CM, Miller D, Grunwald GK, Lynch DA (2003) Quantitative CT indexes in idiopathic pulmonary fibrosis: relationship with physiologic impairment. Radiology 228(2):407–414. https://doi.org/10.1148/radiol.2282020274
Sverzellati N, Calabrò E, Chetta A, Concari G, Larici AR, Mereu M, Cobelli R, De FM, Zompatori M (2007) Visual score and quantitative CT indices in pulmonary fibrosis: relationship with physiologic impairment. Radiol Med (Torino) 112(8):1160–1172. https://doi.org/10.1007/s11547-007-0213-x
Article CAS PubMed Google Scholar
Maldonado F, Moua T, Rajagopalan S, Karwoski RA, Raghunath S, Decker PA, Hartman TE, Bartholmai BJ, Robb RA, Ryu JH (2013) Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 43(1):204–212. https://doi.org/10.1183/09031936.00071812
Wu X, Kim GH, Salisbury ML, Barber D et al (2019) Computed tomographic biomarkers in idiopathic pulmonary fibrosis. The future of quantitative analysis. Am J Respir Crit Care Med 199(1):12–21. https://doi.org/10.1164/rccm.201803-0444PP
Hansell DM, Goldin JG, King TE, Lynch DA, Richeldi L, Wells AU (2015) CT staging and monitoring of fibrotic interstitial lung diseases in clinical practice and treatment trials: a position paper from the Fleischner Society. Lancet Respir Med 3(6):483–496. https://doi.org/10.1016/S2213-2600(15)00096-X
Thillai M, Oldham JM, Ruggiero A, Kanavati F, McLellan T, Saini G, Johnson SR, Ble FX, Azim A, Ostridge K, Platt A, Belvisi M, Maher TM, Molyneaux PL (2024) Deep learning–based segmentation of computed tomography scans predicts disease progression and mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 210(4):465–472. https://doi.org/10.1164/rccm.202311-2185OC
Article PubMed PubMed Central Google Scholar
Shin B, Oh YJ, Kim J, Park SG, Lee KS, Lee HY (2024) Correlation between CT-based phenotypes and serum biomarker in interstitial lung diseases. BMC Pulm Med 24(1):523. https://doi.org/10.1186/s12890-024-03344-8
Article CAS PubMed PubMed Central Google Scholar
Pham TD (2020) A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks. Sci Rep 10(1):16942. https://doi.org/10.1038/s41598-020-74164-z
Article CAS PubMed PubMed Central Google Scholar
Gupta K, Bajaj V (2023) Deep learning models-based CT-scan image classification for automated screening of COVID-19. Biomed Signal Process Control 80:104268. https://doi.org/10.1016/j.bspc.2022.104268
Salama GM, Mohamed A, Abd-Ellah MK (2024) COVID-19 classification based on a deep learning and machine learning fusion technique using chest CT images. Neural Comput Appl 36(10):5347–5365. https://doi.org/10.1007/s00521-023-09346-7
Anetai Y, Doi K, Takegawa H, Koike Y, Yui M, Yoshida A, Hirota K, Yoshida K, Nishio T, Kotoku J, Nakamura M, Nakamura S (2024) Diffusion equation quantification: selective enhancement algorithm for bone metastasis lesions in CT images. Phys Med Biol 69(24):245007. https://doi.org/10.1088/1361-6560/ad965c
Comments (0)