Frisken S, Haouchine N, Rose D, Golby AJ (2022) Using temporal and structural data to reconstruct 3D Cerebral vasculature from a pair of 2D digital subtraction angiography sequences. Comput Med Imag Graph 99:102076. https://doi.org/10.1016/j.compmedimag.2022.102076ss
Bullitt E, Liu A, Pizer SM (1997) Three-dimensional reconstruction of curves from pairs of projection views in the presence of error I. Algorithms. In: Medical Physics
Grist TM, Mistretta CA, Strother CM, Turski PA (2012) Time‐resolved angiography: past, present, and future. J Magn Reson Imag 36(6):1273–1286. https://doi.org/10.1002/jmri.23646sss
Çimen S, Gooya A, Grass M, Frangi AF (2016) Reconstruction of coronary arteries from X-ray angiography: a review. Med Image Anal 32:46–68. https://doi.org/10.1016/j.media.2016.02.007
Copeland AD, Mangoubi RS, Desai MN, Mitter SK, Malek AM (2010) Spatio-temporal data fusion for 3D+T image reconstruction in cerebral angiography. IEEE Trans Med Imag 29(6):1238–1251. https://doi.org/10.1109/TMI.2009.2039645ss
Spiegel M, Redel T, Struffert T, Hornegger J, Doerfler A (2011) A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data. Phys Med Biol 56(19):6401–6419. https://doi.org/10.1088/0031-9155/56/19/015
Article CAS PubMed Google Scholar
Waechter I, Bredno J, Weese J, Barratt DC, Hawkes DJ (2008) Using flow information to support 3D vessel reconstruction from rotational angiography: Using flow information to support 3D vessel reconstruction. Med Phys 35(7Part1):3302–3316. https://doi.org/10.1118/1.2938729
Jandt U, Schäfer D, Grass M, Rasche V (2009) Automatic generation of 3D coronary artery centerlines using rotational X-ray angiography. Med Image Anal 13(6):846–858. https://doi.org/10.1016/j.media.2009.07.010ss
Liao R, Luc D, Sun Y, Kirchberg K (2010) 3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. Int J Cardiovasc Imag 26(7):733–749. https://doi.org/10.1007/s10554-009-9528-0
Li J, Cohen L (2011) Reconstruction of 3D tubular structures from cone-beam projections. In: IEEE symposium biomedical imaging
Galassi F, Alkhalil M, Lee R, Martindale P, Kharbanda RK, Channon KM, Grau V, Choudhury RP (2018) 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses. PLoS ONE 13(1):e0190650. https://doi.org/10.1371/journal.pone.0190650
Article CAS PubMed PubMed Central Google Scholar
Lee NY, Kim GY, Choi HI (2007) 3D modeling of the vessels from X-ray angiography. Digit Human Model. https://doi.org/10.1007/978-3-540-73321-8_74
Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C (2013) 4D digital subtraction angiography: implementation and demonstration of feasibility. Am J Neuroradiol 34(10):1914–1921. https://doi.org/10.3174/ajnr.A3529s
Article CAS PubMed PubMed Central Google Scholar
Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612. https://doi.org/10.1364/JOSAA.1.000612
Schmitt H, Grass M, Rasche V, Schramm O, Haehnel S, Sartor K (2002) An X-ray-based method for the determination of the contrast agent propagation in 3-D vessel structures. IEEE Trans Med Imag 21(3):251–262. https://doi.org/10.1109/42.996343
Platzer E-S, Deinzer F, Paulus D, Denzler J (2008) 3D blood flow reconstruction from 2D angiograms. Digit Human Model. https://doi.org/10.1007/978-3-540-78640-5_58
Zhao H, Zhou Z, Wu F, Xiang D, Zhao H, Zhang W, Li L, Li Z, Huang J, Hu H, Liu C, Wang T, Liu W, Ma J, Yang F, Wang X, Zheng C (2022) Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study. In: Cell reports. medicine
Maas KWH, Pezzotti N, Vermeer AJE, Ruijters D, Vilanova A (2023) NeRF for 3D Reconstruction from X-ray Angiography: Possibilities and Limitations. In: Eurographics visual computing for biology and medicine
Wu S, Kaneko N, Mendoza S, Liebeskind DS, Scalzo F (2023) 3d reconstruction from 2d cerebral angiograms as a volumetric denoising problem. Int Symp Visual Comput. https://doi.org/10.1007/978-3-031-47969-4_30
Zuo J (2021) 2D to 3D neurovascular reconstruction from biplane view via deep learning. In: Computing and data science
Cafaro A, Dorent R, Haouchine N, Lepetit V, Paragios N, Wells WM, Frisken S (2024) Two projections suffice for cerebral vascular reconstruction. MICCAI. https://doi.org/10.1007/978-3-031-72104-5_69
Gopalakrishnan V, Dey N, Golland P (2024) Intraoperative 2D/3D image registration via differentiable X-ray rendering. In: CVPR
Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. MICCAI. https://doi.org/10.1007/BFb0056195
Frisken SF, Haouchine N, Chlorogiannis DD, Gopalakrishnan V, Cafaro A, Wells WT, Golby AJ, Du R (2024) VESCL: an open source 2D vessel contouring library. IJCARS. https://doi.org/10.1007/s11548-024-03212-0
Gopalakrishnan V, Dey N, Chlorogiannis DD, Abumoussa A, Larson AM, Orbach DB, Frisken S, Golland P (2025) Rapid patient-specific neural networks for intraoperative X-ray to volume registration. arXiv:2503.16309
Shit S, Paetzold JC, Sekuboyina A, Ezhov I, Unger A, Zhylka A, Pluim JPW, Bauer U, Menze BH (2021) clDice—a novel topology-preserving loss function for tubular structure segmentation. In: CVPR
Haouchine N, Juvekar P, Xiong X, Luo J, Kapur T, Du R, Golby A, Frisken S (2021) Estimation of high framerate digital subtraction angiography sequences at low radiation dose. MICCAI. https://doi.org/10.1007/978-3-030-87231-1_17
Comments (0)