Spatiotemporally constrained 3D reconstruction from biplanar digital subtraction angiography

Frisken S, Haouchine N, Rose D, Golby AJ (2022) Using temporal and structural data to reconstruct 3D Cerebral vasculature from a pair of 2D digital subtraction angiography sequences. Comput Med Imag Graph 99:102076. https://doi.org/10.1016/j.compmedimag.2022.102076ss

Article  Google Scholar 

Bullitt E, Liu A, Pizer SM (1997) Three-dimensional reconstruction of curves from pairs of projection views in the presence of error I. Algorithms. In: Medical Physics

Grist TM, Mistretta CA, Strother CM, Turski PA (2012) Time‐resolved angiography: past, present, and future. J Magn Reson Imag 36(6):1273–1286. https://doi.org/10.1002/jmri.23646sss

Article  Google Scholar 

Çimen S, Gooya A, Grass M, Frangi AF (2016) Reconstruction of coronary arteries from X-ray angiography: a review. Med Image Anal 32:46–68. https://doi.org/10.1016/j.media.2016.02.007

Article  PubMed  Google Scholar 

Copeland AD, Mangoubi RS, Desai MN, Mitter SK, Malek AM (2010) Spatio-temporal data fusion for 3D+T image reconstruction in cerebral angiography. IEEE Trans Med Imag 29(6):1238–1251. https://doi.org/10.1109/TMI.2009.2039645ss

Article  Google Scholar 

Spiegel M, Redel T, Struffert T, Hornegger J, Doerfler A (2011) A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data. Phys Med Biol 56(19):6401–6419. https://doi.org/10.1088/0031-9155/56/19/015

Article  CAS  PubMed  Google Scholar 

Waechter I, Bredno J, Weese J, Barratt DC, Hawkes DJ (2008) Using flow information to support 3D vessel reconstruction from rotational angiography: Using flow information to support 3D vessel reconstruction. Med Phys 35(7Part1):3302–3316. https://doi.org/10.1118/1.2938729

Article  PubMed  Google Scholar 

Jandt U, Schäfer D, Grass M, Rasche V (2009) Automatic generation of 3D coronary artery centerlines using rotational X-ray angiography. Med Image Anal 13(6):846–858. https://doi.org/10.1016/j.media.2009.07.010ss

Article  PubMed  Google Scholar 

Liao R, Luc D, Sun Y, Kirchberg K (2010) 3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. Int J Cardiovasc Imag 26(7):733–749. https://doi.org/10.1007/s10554-009-9528-0

Article  Google Scholar 

Li J, Cohen L (2011) Reconstruction of 3D tubular structures from cone-beam projections. In: IEEE symposium biomedical imaging

Galassi F, Alkhalil M, Lee R, Martindale P, Kharbanda RK, Channon KM, Grau V, Choudhury RP (2018) 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses. PLoS ONE 13(1):e0190650. https://doi.org/10.1371/journal.pone.0190650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee NY, Kim GY, Choi HI (2007) 3D modeling of the vessels from X-ray angiography. Digit Human Model. https://doi.org/10.1007/978-3-540-73321-8_74

Article  Google Scholar 

Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C (2013) 4D digital subtraction angiography: implementation and demonstration of feasibility. Am J Neuroradiol 34(10):1914–1921. https://doi.org/10.3174/ajnr.A3529s

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612. https://doi.org/10.1364/JOSAA.1.000612

Article  Google Scholar 

Schmitt H, Grass M, Rasche V, Schramm O, Haehnel S, Sartor K (2002) An X-ray-based method for the determination of the contrast agent propagation in 3-D vessel structures. IEEE Trans Med Imag 21(3):251–262. https://doi.org/10.1109/42.996343

Article  CAS  Google Scholar 

Platzer E-S, Deinzer F, Paulus D, Denzler J (2008) 3D blood flow reconstruction from 2D angiograms. Digit Human Model. https://doi.org/10.1007/978-3-540-78640-5_58

Article  Google Scholar 

Zhao H, Zhou Z, Wu F, Xiang D, Zhao H, Zhang W, Li L, Li Z, Huang J, Hu H, Liu C, Wang T, Liu W, Ma J, Yang F, Wang X, Zheng C (2022) Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study. In: Cell reports. medicine

Maas KWH, Pezzotti N, Vermeer AJE, Ruijters D, Vilanova A (2023) NeRF for 3D Reconstruction from X-ray Angiography: Possibilities and Limitations. In: Eurographics visual computing for biology and medicine

Wu S, Kaneko N, Mendoza S, Liebeskind DS, Scalzo F (2023) 3d reconstruction from 2d cerebral angiograms as a volumetric denoising problem. Int Symp Visual Comput. https://doi.org/10.1007/978-3-031-47969-4_30

Article  Google Scholar 

Zuo J (2021) 2D to 3D neurovascular reconstruction from biplane view via deep learning. In: Computing and data science

Cafaro A, Dorent R, Haouchine N, Lepetit V, Paragios N, Wells WM, Frisken S (2024) Two projections suffice for cerebral vascular reconstruction. MICCAI. https://doi.org/10.1007/978-3-031-72104-5_69

Article  Google Scholar 

Gopalakrishnan V, Dey N, Golland P (2024) Intraoperative 2D/3D image registration via differentiable X-ray rendering. In: CVPR

Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. MICCAI. https://doi.org/10.1007/BFb0056195

Article  Google Scholar 

Frisken SF, Haouchine N, Chlorogiannis DD, Gopalakrishnan V, Cafaro A, Wells WT, Golby AJ, Du R (2024) VESCL: an open source 2D vessel contouring library. IJCARS. https://doi.org/10.1007/s11548-024-03212-0

Article  Google Scholar 

Gopalakrishnan V, Dey N, Chlorogiannis DD, Abumoussa A, Larson AM, Orbach DB, Frisken S, Golland P (2025) Rapid patient-specific neural networks for intraoperative X-ray to volume registration. arXiv:2503.16309

Shit S, Paetzold JC, Sekuboyina A, Ezhov I, Unger A, Zhylka A, Pluim JPW, Bauer U, Menze BH (2021) clDice—a novel topology-preserving loss function for tubular structure segmentation. In: CVPR

Haouchine N, Juvekar P, Xiong X, Luo J, Kapur T, Du R, Golby A, Frisken S (2021) Estimation of high framerate digital subtraction angiography sequences at low radiation dose. MICCAI. https://doi.org/10.1007/978-3-030-87231-1_17

Article  PubMed  Google Scholar 

Comments (0)

No login
gif