Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy

Chen JJ, Juluru K, Morgan T, Moffitt R, Siddiqui KM, Siegel EL (2014) Implications of surface-rendered facial CT images in patient privacy. AJR Am J Roentgenol 202(6):1267–1271. https://doi.org/10.2214/AJR.13.10608

Article  PubMed  Google Scholar 

Mazura JC, Juluru K, Chen JJ, Morgan TA, John M, Siegel EL (2012) Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security. J Digit Imaging 25(3):347–351. https://doi.org/10.1007/s10278-011-9429-3

Article  PubMed  Google Scholar 

Parks CL, Monson KL (2017) Automated facial recognition of computed tomography-derived facial images: patient privacy implications. J Digit Imaging 30(2):204–214. https://doi.org/10.1007/s10278-016-9932-7

Article  PubMed  Google Scholar 

Schwarz CG, Kremers WK, Therneau TM, Sharp RR, Gunter JL, Vemuri P, Arani A, Spychalla AJ, Kantarci K, Knopman DS, Petersen RC, Jack CR Jr (2019) Identification of anonymous MRI research participants with face-recognition software. N Engl J Med 381(17):1684–1686. https://doi.org/10.1056/NEJMc1908881

Article  PubMed  PubMed Central  Google Scholar 

Schwarz CG, Kremers WK, Lowe VJ, Savvides M, Gunter JL, Senjem ML, Vemuri P, Kantarci K, Knopman DS, Petersen RC, Jack CR (2022) Face recognition from research brain PET: an unexpected PET problem. Neuroimage 258:119357. https://doi.org/10.1016/j.neuroimage.2022.119357

Article  PubMed  Google Scholar 

Prior FW, Brunsden B, Hildebolt C, Nolan TS, Pringle M, Vaishnavi SN, Larson-Prior LJ (2009) Facial recognition from volume-rendered magnetic resonance imaging data. IEEE Trans Inf Technol Biomed 13(1):5–9. https://doi.org/10.1109/TITB.2008.2003335

Article  PubMed  Google Scholar 

Bischoff-Grethe A, Ozyurt IB, Busa E, Quinn BT, Fennema-Notestine C, Clark CP, Morris S, Bondi MW, Jernigan TL, Dale AM, Brown GG, Fischl B (2007) A technique for the deidentification of structural brain MR images. Hum Brain Mapp 28(9):892–903. https://doi.org/10.1002/hbm.20312

Article  PubMed  PubMed Central  Google Scholar 

Matlock M, Schimke N, Kong L, Macke S, Hale J (2012) Systematic redaction for neuroimage data. Int J Comput Models Algorithms Med 3(2):63–75. https://doi.org/10.4018/jcmam.2012040104

Article  Google Scholar 

Budin F, Zeng D, Ghosh A, Bullitt E (2008) Preventing facial recognition when rendering MR images of the head in three dimensions. Med Image Anal 12(3):229–239. https://doi.org/10.1016/j.media.2007.10.008

Article  PubMed  Google Scholar 

Uchida T, Kin T, Saito T, Shono N, Kiyofuji S, Koike T, Sato K, Niwa R, Takashima I, Oyama H, Saito N (2023) De-identification technique with facial deformation in head CT images. Neuroinformatics 21(3):575–587. https://doi.org/10.1007/s12021-023-09631-9

Article  PubMed  PubMed Central  Google Scholar 

Selfridge AR, Spencer BA, Abdelhafez YG, Nakagawa K, Tupin JD, Badawi RD (2023) Facial anonymization and privacy concerns in total-body PET/CT. J Nucl Med 64(8):1304. https://doi.org/10.2967/jnumed.122.265280

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milchenko M, Marcus D (2013) Obscuring surface anatomy in volumetric imaging data. Neuroinformatics 11(1):65–75. https://doi.org/10.1007/s12021-012-9160-3

Article  PubMed  PubMed Central  Google Scholar 

Schwarz CG, Kremers WK, Wiste HJ, Gunter JL, Vemuri P, Spychalla AJ, Kantarci K, Schultz AP, Sperling RA, Knopman DS, Petersen RC, Jack Jr CR, Alzheimer's Disease Neuroimaging I (2021) Changing the face of neuroimaging research: comparing a new MRI de-facing technique with popular alternatives. Neuroimage 231: 117845. https://doi.org/10.1016/j.neuroimage.2021.117845

Berry SD, Edgar HJH (2021) Announcement: the New Mexico decedent image database. Forensic Imaging 24:200436. https://doi.org/10.1016/j.fri.2021.200436

Article  Google Scholar 

Daneshvari Berry S, Kroth PJ, Edgar HJH, Warner TD (2021) Developing the minimum dataset for the new Mexico decedent image database. Appl Clin Inform 12(3):518–527. https://doi.org/10.1055/s-0041-1730999

Article  PubMed  PubMed Central  Google Scholar 

Edgar H, Daneshvari Berry S, Moes E, Adolphi N, Bridges P, Nolte K (2020) New Mexico decedent image database. Office of the Medical Investigator, University of New Mexico: Albuquerque, NM, USA

Chevrier R, Foufi V, Gaudet-Blavignac C, Robert A, Lovis C (2019) Use and understanding of anonymization and de-identification in the biomedical literature: scoping review. J Med Internet Res 21(5):e13484. https://doi.org/10.2196/13484

Article  PubMed  PubMed Central  Google Scholar 

Nass SJ, Levit LA, Gostin LO (2009) HIPAA, the privacy rule, and its application to health research. In: Nass SJ, Levit LA, Gostin LO (eds) Beyond the HIPAA privacy rule: enhancing privacy, improving health through research, Washington (DC)

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

Zhu L, Kolesov I, Gao Y, Kikinis R, Tannenbaum AR (2014) An effective interactive medical image segmentation method using fast GrowCut

Dey JK, Recker CA, Olson MD, Bowen AJ, Panda A, Kostandy PM, Lane JI, Hamilton GS (2019) Assessing nasal soft-tissue envelope thickness for rhinoplasty. JAMA Fac Plast Surg 21(6):511–517. https://doi.org/10.1001/jamafacial.2019.0715

Article  Google Scholar 

Ding AS, Lu A, Li Z, Galaiya D, Siewerdsen JH, Taylor RH, Creighton FX (2022) Automated registration-based temporal bone computed tomography segmentation for applications in neurotologic surgery. Otolaryngol Head Neck Surg 167(1):133–140. https://doi.org/10.1177/01945998211044982

Article  PubMed  Google Scholar 

Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41. https://doi.org/10.1016/j.media.2007.06.004

Article  CAS  PubMed  Google Scholar 

Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211. https://doi.org/10.1038/s41592-020-01008-z

Article  CAS  PubMed  Google Scholar 

Ding AS, Lu A, Li Z, Sahu M, Galaiya D, Siewerdsen JH, Unberath M, Taylor RH, Creighton FX (2023) A self-configuring deep learning network for segmentation of temporal bone anatomy in cone-beam CT imaging. Otolaryngol Head Neck Surg 169(4):988–998. https://doi.org/10.1002/ohn.317

Article  PubMed  PubMed Central  Google Scholar 

Taghanaki SA, Zheng Y, Kevin Zhou S, Georgescu B, Sharma P, Xu D, Comaniciu D, Hamarneh G (2019) Combo loss: Handling input and output imbalance in multi-organ segmentation. Comput Med Imaging Graph 75:24–33. https://doi.org/10.1016/j.compmedimag.2019.04.005

Article  PubMed  Google Scholar 

Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells WM, Jolesz FA, Kikinis R (2004) Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports. Acad Radiol 11(2):178–189. https://doi.org/10.1016/S1076-6332(03)00671-8

Article  PubMed  PubMed Central  Google Scholar 

Dubuisson M-P, Jain AK (1994) A modified Hausdorff distance for object matching. In: Proceedings of 12th international conference on pattern recognition. IEEE, Jerusalem

Abramian D, Eklund A (2019) Refacing: reconstructing anonymized facial features using GANS. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019)

Gulban OF, Nielson D, Lee J, Poldrack R, Gorgolewski C, Markiewicz C (2022) poldracklab/pydeface: PyDeface v2.0.2. Zenodo

Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Vallee E, Vidaurre D, Webster M, McCarthy P, Rorden C, Daducci A, Alexander DC, Zhang H, Dragonu I, Matthews PM, Miller KL, Smith SM (2018) Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166:400–424. https://doi.org/10.1016/j.neuroimage.2017.10.034

Article  PubMed  Google Scholar 

Schwarz CG, Kremers WK, Arani A, Savvides M, Reid RI, Gunter JL, Senjem ML, Cogswell PM, Vemuri P, Kantarci K, Knopman DS, Petersen RC, Jack CR (2023) A face-off of MRI research sequences by their need for de-facing. Neuroimage 276:120199. https://doi.org/10.1016/j.neuroimage.2023.120199

Article  CAS  PubMed  Google Scholar 

Souza LAD, Marana AN, Weber SAT (2018) Automatic frontal sinus recognition in computed tomography images for person identification. For Sci Int 286:252–264. https://doi.org/10.1016/j.forsciint.2018.03.029

Article  Google Scholar 

Patil N, Karjodkar FR, Sontakke S, Sansare K, Salvi R (2012) Uniqueness of radiographic patterns of the frontal sinus for personal identification. Imaging Sci Dent 42(4):213–217

Article  PubMed  PubMed Central  Google Scholar 

Oura K, Ikeda N, Yoon Y, Kato T, Morishita J (2022) Potential for personal identification using the volume of the mastoid air cells extracted from postmortem computed tomographic images. Leg Med 58:102060. https://doi.org/10.1016/j.legalmed.2022.102060

Comments (0)

No login
gif