Cell generation with label evolution diffusion and class mask self-attention

Arslan F, Kabas B, Dalmaz O, Muzaffer Çukur T (2024) Self-consistent recursive diffusion bridge for medical image translation. CoRR

Atli Omer F, Kabas B, Arslan F, Demirtas AC, Yurt M, Dalmaz O, Cukur T (2024) I2i-mamba: Multi-modal medical image synthesis via selective state space modeling. arXiv preprint arXiv:2405.14022

Barratt S, Sharma R (2018) A note on the inception score

Cross-Zamirski JO, Anand P, Williams G, Mouchet E, Wang Y, Schönlieb C-B (2023) Class-guided image-to-image diffusion: Cell painting from brightfield images with class labels. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV) workshops, pp 3800–3809

Dhariwal P, Nichol A (2021) Diffusion models beat gans on image synthesis. Adv Neural Inf Process Syst 34:8780–8794

Google Scholar 

Geyer S, Camenzind LC, Czornomaz L, Deshpande V, Fuhrer A, Warburton RJ, Zumbuhl DM, Kuhlmann AV (2020) Silicon quantum dot devices with a self-aligned second gate layer. Mesoscale Nanoscale Phys

Goodfellow I, Pouget-Abadie J, Mirza M, Bing X, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144

Article  Google Scholar 

Graham S, Jahanifar M, Azam AS, Nimir M, Tsang Y-W, Dodd KC, Hero E, Sahota H, Tank A, Benes K, Wahab N, Minhas FA, Raza SEA, Eldaly H, Gopalakrishnan K, Snead DRJ, Rajpoot NM (2021) Lizard: A large-scale dataset for colonic nuclear instance segmentation and classification. In: 2021 IEEE/CVF international conference on computer vision workshops (ICCVW), pp 684–693

Gu A, Dao T (2023) Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752

Guan KM (2018) Reconstructing pore networks using generative adversarial networks

Ho J, Chan W, Saharia C (2023) Imagen video: High-definition video generation with diffusion models. In: IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 10289–10298

Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. Adv Neural Inf Process Syst 33:6840–6851

Google Scholar 

Iashchenko A, Andreev P, Shchekotov I, Babaev N, Vetrov D (2023) Undiff: unsupervised voice restoration with unconditional diffusion model. Proc Interspeech 2023:4294–4298

Google Scholar 

Ignatov A, Yates J, Boeva V (2024) Histopathological image classification with cell morphology aware deep neural networks. In: 2024 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 6913–6925

Ju Z, Zhou W (2024) Vm-ddpm: Vision mamba diffusion for medical image synthesis. arXiv preprint arXiv:2405.05667

Karras T, Aila T, Laine S, Lehtinen J (2018) Progressive growing of gans for improved quality, stability, and variation. In: International conference on learning representations (ICLR)

Karras T, Aila T, Laine S, Lehtinen J (2018) Progressive growing of gans for improved quality, stability, and variation. In: International conference on learning representations

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2324

Article  Google Scholar 

Li J (2023) Exploring clip feature vectors for improved out-of-distribution detection

Liu Y, Diao J, Zhou Z, Qi H, Hu P (2024) Cardiac cine mri motion correction using diffusion models. In: 2024 IEEE international symposium on biomedical imaging (ISBI), pp 1–5

Longuefosse A, Dournes G, Benlala I, de Senneville BD, Laurent F, Desbarats P, Baldacci F (2023) Lung ct synthesis using gans with conditional normalization on registered ultrashort echo-time mri. In: 2023 IEEE 20th international symposium on biomedical imaging (ISBI), pp 1–5

Lopez R, Boyeau P, Jordan MI, Regier J (2020) Auto-encoding variational bayes

Luo Y, Yang Q, Liu Z, Shi Z, Huang W, Zheng G, Cheng J (2024) Target-guided diffusion models for unpaired cross-modality medical image translation. IEEE J Biomed Health Inform 28(7):4062–4071

Article  PubMed  Google Scholar 

Özbey M, Dalmaz O, Dar SUH, Bedel HA, Şaban Özturk, Güngör A, Çukur T (2023) Unsupervised medical image translation with adversarial diffusion models, IEEE Trans Med Imaging

Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434

Rashmi U, Beena BM, Preethi A, Ambesange S (2023) An image enhancement and data augmentation of alzheimer’s mri data using modified srgan. In: 2023 14th international conference on computing communication and networking technologies (ICCCNT). IEEE, pp 1–5

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, pp 234–241

Alon S, Tav N, Maia L, Gómez-de ME, Iván H-C, Onit A, Ashwin B, Mike H, Ricardo H, Yoav S (2025) This microtubule does not exist: Super-resolution microscopy image generation by a diffusion model. Small Methods 9(3):2400672

Saisai D, Jia L (2020) High resolution dermoscopy image synthesis method with pix2pixhd. J Comput-Aided Design Comput Graphics 32(11):1795–1803

Google Scholar 

Senapati RK, Satvika R, Anmandla A, Ashesh RG, Kumar CA (2023) Image-to-image translation using pix2pix gan and cycle gan. In: International conference on data intelligence and cognitive informatics. Springer, pp 573–586

Shen D, Guorong W, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrivastava A, Fletcher PT (2023) Nasdm: nuclei-aware semantic histopathology image generation using diffusion models. In: International conference on medical image computing and computer-assisted intervention

Son HH, Phuong PC, van Walsum T, Ha LM (2020) Liver segmentation on a variety of computed tomography (ct) images based on convolutional neural networks combined with connected components. VNU J Sci Comput Sci Commun Eng

Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Aidan G, Lukasz K, Illia P (2017) Attention is all you need. In: Neural information processing systems

Waibel DJE, Röell E, Rieck B, Giryes R, Marr C (2023) A diffusion model predicts 3d shapes from 2d microscopy images. In: 2023 IEEE 20th international symposium on biomedical imaging (ISBI). IEEE, pp 1–5

Zhan W, Rongjun GY, Chen XH, Limin LY, Cao HY (2021) Automatic patient-level detection of coronavirus disease (covid-19) using convolutional neural network from lung ct scans. J Med Imaging Health Inform 11:2722–2732

Article  Google Scholar 

Ying X, Liu L, Wang Y, Li R, Chen N, Lin Z, Sheng W, Zhou S (2023) Mapping degeneration meets label evolution: Learning infrared small target detection with single point supervision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 15528–15538

Yuan Z, Zhang J, Shan S, Chen X (2021) Attributes aware face generation with generative adversarial networks. In: 2020 25th international conference on pattern recognition (ICPR), pp 1657–1664

Comments (0)

No login
gif