Uncertainty Quantification in Image-based 2D/3D Registration and Its Relationship with Accuracy

Zou K, Chen Z, Yuan X, Shen X, Wang M, Fu H (2023) A review of uncertainty estimation and its application in medical imaging. Meta-Radiology, 100003

Unberath M, Gao C, Hu Y, Judish M, Taylor RH, Armand M, Grupp R (2021) The impact of machine learning on 2d/3d registration for image-guided interventions: A systematic review and perspective. Frontiers in Robotics and AI 8:716007

Article  PubMed  PubMed Central  Google Scholar 

Luo, J., Sedghi, A., Popuri, K., Cobzas, D., Zhang, M., Preiswerk, F., Toews, M., Golby, A., Sugiyama, M., Wells, W.M., et al.: On the applicability of registration uncertainty. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22, pp. 410–419 (2019). Springer

Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3d/2d registration methods for image-guided interventions. Medical image analysis 16(3):642–661

Article  CAS  PubMed  Google Scholar 

Risholm P, Janoos F, Norton I, Golby AJ, Wells WM III (2013) Bayesian characterization of uncertainty in intra-subject non-rigid registration. Medical image analysis 17(5):538–555

Article  PubMed  PubMed Central  Google Scholar 

Schultz S, Handels H, Ehrhardt J (2018) A multilevel markov chain monte carlo approach for uncertainty quantification in deformable registration. In: Medical Imaging 2018: Image Processing, vol. 10574, pp. 162–169. SPIE

Grupp RB (2020) Computer-assisted fluoroscopic navigation for orthopaedic surgery. PhD thesis, Johns Hopkins University

Huang, L., Ruan, S., Xing, Y., Feng, M.: A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods. Medical Image Analysis, 103223 (2024)

Le Folgoc L, Delingette H, Criminisi A, Ayache N (2016) Quantifying registration uncertainty with sparse bayesian modelling. IEEE transactions on medical imaging 36(2):607–617

Article  PubMed  Google Scholar 

Yang X, Kwitt R, Styner M, Niethammer M (2017) Quicksilver: Fast predictive image registration-a deep learning approach. NeuroImage 158:378–396

Article  PubMed  Google Scholar 

Dalca AV, Balakrishnan G, Guttag J, Sabuncu MR (2019) Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Medical image analysis 57:226–236

Article  PubMed  Google Scholar 

Cho SM, Grupp RB, Gomez C, Gupta I, Armand M, Osgood G, Taylor RH, Unberath M (2023) Visualization in 2d/3d registration matters for assuring technology-assisted image-guided surgery. International journal of computer assisted radiology and surgery 18(6):1017–1024

Article  PubMed  PubMed Central  Google Scholar 

Cho SM, Taylor RH, Unberath M (2024) Misjudging the machine: Gaze may forecast human-machine team performance in surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 401–410. Springer

Hu Y, Bonmati E, Gibson E, Hipwell JH, Hawkes DJ, Bandula S, Pereira SP, Barratt DC (2016) 2d-3d registration accuracy estimation for optimised planning of image-guided pancreatobiliary interventions. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part I 19, pp. 516–524. Springer

Shams R, Xiao Y, Hébert F, Abramowitz M, Brooks R, Rivaz H (2017) Assessment of rigid registration quality measures in ultrasound-guided radiotherapy. IEEE transactions on medical imaging 37(2):428–437

Article  PubMed  Google Scholar 

Grupp RB, Unberath M, Gao C, Hegeman RA, Murphy RJ, Alexander CP, Otake Y, McArthur BA, Armand M, Taylor RH (2020) Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2d/3d registration. International journal of computer assisted radiology and surgery 15:759–769

Article  PubMed  PubMed Central  Google Scholar 

Grupp R, Unberath M, Gao C, Hegeman R, Murphy R, Alexander C, Otake Y, McArthur B, Armand M, Taylor R (2020) Data and code associated with the publication: Automatic Annotation of Hip Anatomy in Fluoroscopy for Robust and Efficient 2D/3D Registration. Johns Hopkins Research Data Repository . https://doi.org/10.7281/T1/IFSXNV

Grupp RB, Armand M, Taylor RH (2018) Patch-based image similarity for intraoperative 2d/3d pelvis registration during periacetabular osteotomy. In: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis: First International Workshop, OR 2.0 2018, 5th International Workshop, CARE 2018, 7th International Workshop, CLIP 2018, Third International Workshop, ISIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings 5, pp. 153–163. Springer

Comments (0)

No login
gif