An axon guidance-related microRNA panel identifies perivascular plexus local recurrence following curative surgery in patients with pancreatic cancer

Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

Article  PubMed  Google Scholar 

Groot VP, Gemenetzis G, Blair AB, et al. Defining and predicting early recurrence in 957 patients with resected pancreatic ductal adenocarcinoma. Ann Surg. 2019;269(6):1154–62.

Article  PubMed  Google Scholar 

Groot VP, Rezaee N, Wu W, et al. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann Surg. 2018;267(5):936–45.

Article  PubMed  Google Scholar 

Ishido K, Hakamada K, Kimura N, et al. Essential updates 2018/2019: current topics in the surgical treatment of pancreatic ductal adenocarcinoma. Ann Gastroenterol Surg. 2021;5(1):7–23.

Article  PubMed  Google Scholar 

Parikh AA, Maiga A, Bentrem D, et al. Adjuvant therapy in pancreas cancer: does it influence patterns of recurrence? J Am Coll Surg. 2016;222(4):448–56.

Article  PubMed  PubMed Central  Google Scholar 

Wakiya T, Ishido K, Yoshizawa T, et al. Roles of the nervous system in pancreatic cancer. Ann Gastroenterol Surg. 2021;5(5):623–33.

Article  PubMed  PubMed Central  Google Scholar 

Conroy T, Bachet J-B, Ayav A, et al. Current standards and new innovative approaches for treatment of pancreatic cancer. Eur J Cancer. 2016;57:10–22.

Article  PubMed  Google Scholar 

Hackert T. Surgery for pancreatic cancer after neoadjuvant treatment. Ann Gastroenterol Surg. 2018;2(6):413–8.

Article  PubMed  PubMed Central  Google Scholar 

Jang JY, Han Y, Lee H, et al. Oncological benefits of neoadjuvant chemoradiation with gemcitabine versus upfront surgery in patients with borderline resectable pancreatic cancer: a prospective, randomized, open-label, multicenter phase 2/3 trial. Ann Surg. 2018;268(2):215–22.

Article  PubMed  Google Scholar 

Neoptolemos JP, Palmer DH, Ghaneh P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. The Lancet. 2017;389(10073):1011–24.

Article  CAS  Google Scholar 

Oettle H, Neuhaus P, Hochhaus A, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA. 2013;310(14):1473–81.

Article  CAS  PubMed  Google Scholar 

Takahashi H, Akita H, Tomokuni A, et al. Preoperative gemcitabine-based chemoradiation therapy for borderline resectable pancreatic cancer: impact of venous and arterial involvement status on surgical outcome and pattern of recurrence. Ann Surg. 2016;264(6):1091–7.

Article  PubMed  Google Scholar 

Uesaka K, Boku N, Fukutomi A, et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). The Lancet. 2016;388(10041):248–57.

Article  CAS  Google Scholar 

Scott JG, Berglund A, Schell MJ, et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 2017;18(2):202–11.

Article  PubMed  Google Scholar 

Brown JM, Adler JR. Is equipment development stifling innovation in radiation oncology? Int J Radiat Oncol Biol Phys. 2015;92(4):713–4.

Article  PubMed  Google Scholar 

Nishiwada S, Sho M, Cui Y, et al. A gene expression signature for predicting response to neoadjuvant chemoradiotherapy in pancreatic ductal adenocarcinoma. Int J Cancer. 2021;148(3):769–79.

Article  CAS  PubMed  Google Scholar 

Sho M, Akahori T, Tanaka T, et al. Optimal indication of neoadjuvant chemoradiotherapy for pancreatic cancer. Langenbecks Arch Surg. 2015;400(4):477–85.

Article  PubMed  Google Scholar 

Sho M, Akahori T, Tanaka T, et al. Pathological and clinical impact of neoadjuvant chemoradiotherapy using full-dose gemcitabine and concurrent radiation for resectable pancreatic cancer. J Hepatobil Pancreat Sci. 2013;20(2):197–205.

Article  Google Scholar 

Murphy JE, Wo JY, Ryan DP, et al. Total neoadjuvant therapy with FOLFIRINOX followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: a phase 2 clinical trial. JAMA Oncol. 2018;4(7):963–9.

Article  PubMed  PubMed Central  Google Scholar 

Takahashi H, Ohigashi H, Ishikawa O, et al. Perineural invasion and lymph node involvement as indicators of surgical outcome and pattern of recurrence in the setting of preoperative gemcitabine-based chemoradiation therapy for resectable pancreatic cancer. Ann Surg. 2012;255(1):95–102.

Article  PubMed  Google Scholar 

Tempero MA, Malafa MP, Al-Hawary M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(4):439–57.

Article  CAS  PubMed  Google Scholar 

Igarashi T, Yamada S, Hoshino Y, et al. Prognostic factors in conversion surgery following nab-paclitaxel with gemcitabine and subsequent chemoradiotherapy for unresectable locally advanced pancreatic cancer: results of a dual-center study. Ann Gastroenterol Surg. 2023;7(1):157–66.

Article  PubMed  Google Scholar 

Lee M, Kang JS, Kim H, et al. Impact of conversion surgery on survival in locally advanced pancreatic cancer patients treated with FOLFIRINOX chemotherapy. J Hepatobil Pancreat Sci. 2023;30(1):111–21.

Article  Google Scholar 

Nagai M, Nakamura K, Terai T, et al. Significance of multiple tumor markers measurements in conversion surgery for unresectable locally advanced pancreatic cancer. Pancreatology. 2023;23(6):721–8.

Article  CAS  PubMed  Google Scholar 

Oba A, Del Chiaro M, Fujii T, et al. “Conversion surgery” for locally advanced pancreatic cancer: a position paper by the study group at the joint meeting of the International Association of Pancreatology (IAP) & Japan Pancreas Society (JPS) 2022. Pancreatology. 2023;23(6):712–20.

Article  PubMed  Google Scholar 

Wang W, Li L, Chen N, et al. Nerves in the tumor microenvironment: origin and effects. Front Cell Dev Biol. 2020;8: 601738.

Article  PubMed  PubMed Central  Google Scholar 

Li J, Kang R, Tang D. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun (Lond). 2021;41(8):642–60.

Article  PubMed  Google Scholar 

Silverman DA, Martinez VK, Dougherty PM, et al. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res. 2021;81(6):1431–40.

Article  CAS  PubMed  Google Scholar 

Jurcak NR, Rucki AA, Muth S, et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology. 2019;157(3):838-850e836.

Article  CAS  PubMed  Google Scholar 

Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schorn S, Demir IE, Haller B, et al. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma—a systematic review and meta-analysis. Surg Oncol. 2017;26(1):105–15.

Article  PubMed  Google Scholar 

Crippa S, Pergolini I, Javed AA, et al. Implications of perineural invasion on disease recurrence and survival after pancreatectomy for pancreatic head ductal adenocarcinoma. Ann Surg. 2022;276(2):378–85.

Article  PubMed  Google Scholar 

Nishiwada S, Cui Y, Sho M, et al. Transcriptomic profiling identifies an exosomal microRNA signature for predicting recurrence following surgery in patients with pancreatic ductal adenocarcinoma. Ann Surg. 2022;276(6):e876–85.

Article  PubMed  Google Scholar 

Nishiwada S, Sho M, Banwait JK, et al. A MicroRNA signature identifies pancreatic ductal adenocarcinoma patients at risk for lymph node metastases. Gastroenterology. 2020;159(2):562–74.

Article 

Comments (0)

No login
gif