Predicting hemorrhagic transformation in acute ischemic stroke: a systematic review, meta-analysis, and methodological quality assessment of CT/MRI-based deep learning and radiomics models

Katan M, Luft A (2018) Global burden of stroke. Semin Neurol 38:208–211. https://doi.org/10.1055/s-0038-1649503

Article  PubMed  Google Scholar 

Broderick JP, Schroth G (2013) What the SWIFT and TREVO II trials tell us about the role of endovascular therapy for acute stroke. Stroke 44:1761–1764. https://doi.org/10.1161/strokeaha.113.000740

Article  PubMed  PubMed Central  Google Scholar 

Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 44:870–947. https://doi.org/10.1161/str.0b013e318284056a

Article  PubMed  Google Scholar 

Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CBLM, van der Lugt A, de Miquel MA, Donnan GA, Roos YBWEM, Bonafe A, Jahan R, Diener H-C, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BCV, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. The Lancet 387:1723–1731. https://doi.org/10.1016/s0140-6736(16)00163-x

Article  Google Scholar 

Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, Lennon O, Meschia JF, Nguyen TN, Pollak PM, Santangeli P, Sharrief AZ, Smith SC, Turan TN, Williams LS (2021) 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the american heart association/american stroke association. Stroke 52:e364–e467. https://doi.org/10.1161/str.0000000000000375

Article  PubMed  Google Scholar 

Panni P, Gory B, Xie Y, Consoli A, Desilles J-P, Mazighi M, Labreuche J, Piotin M, Turjman F, Eker OF, Bracard S, Anxionnat R, Richard S, Hossu G, Blanc R, Lapergue B, Redjem H, Escalard S, Redjem H, Ciccio G, Smajda S, Fahed R, Obadia M, Sabben C, Corabianu O, de Broucker T, Smadja D, Alamowitch S, Ille O, Manchon E, Garcia P-Y, Taylor G, Maacha MB, Bourdain F, Decroix J-P, Wang A, Evrard S, Tchikviladze M, Coskun O, Maria FD, Rodesh G, Leguen M, Tisserand M, Pico F, Rakotoharinandrasana H, Tassan P, Poll R, Nighoghossian N, Labeyrie PE, Riva R, Derex L, Cho T-H, Mechtouff L, Lukaszewicz AC, Philippeau F, Cakmak S, Blanc-Lasserre K, Vallet A-E (2019) Acute stroke with large ischemic core treated by thrombectomy. Stroke 50:1164–1171. https://doi.org/10.1161/strokeaha.118.024295

Article  PubMed  Google Scholar 

Ande SR, Grynspan J, Aviv RI, Jai, (2021) Imaging for predicting hemorrhagic transformation of acute ischemic stroke—a narrative review. Can Assoc Radiol J 73:194–202. https://doi.org/10.1177/08465371211018369

Li W, Xing X, Wen C, Liu H (2022) Risk factors and functional outcome were associated with hemorrhagic transformation after mechanical thrombectomy for acute large vessel occlusion stroke. J Neurosurg Sci 67:585–590. https://doi.org/10.23736/s0390-5616.20.05141-

Article  Google Scholar 

Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH (2022) Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res 130:1204–1229. https://doi.org/10.1161/circresaha.121.319949

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing Y, Guo Z-N, Yan S, Jin H, Wang S, Yang Y (2014) Increased globulin and its association with hemorrhagic transformation in patients receiving intra-arterial thrombolysis therapy. Neurosci Bull/Neurosci Bull 30:469–476. https://doi.org/10.1007/s12264-013-1440-x

Article  CAS  PubMed  Google Scholar 

He J, Fu F, Zhang W, Zhan Z, Cheng Z (2022) Prognostic significance of the clinical and radiological haemorrhagic transformation subtypes in acute ischaemic stroke: a systematic review and meta-analysis. Eur J Neurol 29:3449–3459. https://doi.org/10.1111/ene.15482

Article  PubMed  Google Scholar 

van Kranendonk KR, Treurniet KM, Boers AMM, Berkhemer OA, van den Berg LA, Chalos V, Lingsma HF, van Zwam WH, van der Lugt A, van Oostenbrugge RJ, Dippel DWJ, Roos YBWEM, Marquering HA, Majoie CBLM (2018) Hemorrhagic transformation is associated with poor functional outcome in patients with acute ischemic stroke due to a large vessel occlusion. J NeuroInterventional Surg 11:464–468. https://doi.org/10.1136/neurintsurg-2018-014141

Article  Google Scholar 

Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 28:31–38. https://doi.org/10.1038/s41591-021-01614-0

Article  CAS  PubMed  Google Scholar 

Cui S, Song H, Ren H, Wang X, Xie Z, Wen H, Li Y (2022) Prediction of hemorrhagic complication after thrombolytic therapy based on multimodal data from multiple centers: an approach to machine learning and system implementation. J Personalized Med 12:2052. https://doi.org/10.3390/jpm12122052

Article  Google Scholar 

Heo J, Sim Y, Kim BM, Kim DJ, Kim YD, Nam HS, Choi YS, Lee S-K, Kim EY, Sohn B (2024) Radiomics using non-contrast CT to predict hemorrhagic transformation risk in stroke patients undergoing revascularization. Eur Radiol 34:6005–6015. https://doi.org/10.1007/s00330-024-10618-6

Article  PubMed  Google Scholar 

Heo J, Yoon Y, Han HJ, Kim J-J, Park KY, Kim BM, Kim DJ, Kim YD, Nam HS, Lee S-K, Sohn B (2023) Prediction of cerebral hemorrhagic transformation after thrombectomy using a deep learning of dual-energy CT. Eur Radiol 34:3840–3848. https://doi.org/10.1007/s00330-023-10432-6

Article  PubMed  Google Scholar 

Jiang L, Zhou L, Yong W, Cui J, Geng W, Chen H, Zou J, Chen Y, Yin X, Chen Y (2021) A deep learning-based model for prediction of hemorrhagic transformation after stroke. Brain Pathol 33:e13023. https://doi.org/10.1111/bpa.13023

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Xie G, Zhang L, Li J, Tang W, Wang D, Yang L, Li K (2024) Constructing Machine Learning Models Based on non-contrast CT Radiomics to Predict Hemorrhagic Transformation after stoke: a two-center Study. Front Neurol 15. https://doi.org/10.3389/fneur.2024.1413795

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

Article  PubMed  Google Scholar 

Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJWL, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

Article  PubMed  PubMed Central  Google Scholar 

Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

Article  PubMed  Google Scholar 

Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25:24–29. https://doi.org/10.1038/s41591-018-0316-z

Article  CAS  PubMed  Google Scholar 

Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380:1347–1358. https://doi.org/10.1056/nejmra1814259

Article  PubMed  Google Scholar 

Choi J-M, Seo S-Y, Kim P-J, Kim Y-S, Lee S-H, Sohn J-H, Kim D-K, Lee J-J, Kim C (2021) Prediction of hemorrhagic transformation after ischemic stroke using machine learning. J Personalized Med 11:863. https://doi.org/10.3390/jpm11090863

Article  Google Scholar 

Li X, Xu C, Shang C, Wang Y, Xu J, Zhou Q (2023) Machine learning predicts the risk of hemorrhagic transformation of acute cerebral infarction and in-hospital death. Comput Methods Programs Biomed 237:107582–107582. https://doi.org/10.1016/j.cmpb.2023.107582

Article  PubMed  Google Scholar 

Wang F, Huang Y, Xia Y, Zhang W, Fang K, Zhou X, Yu X, Cheng X, Li G, Wang X, Luo G, Wu D, Liu X, Campbell BCV, Dong Q, Zhao Y (2020) Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model. Ther Adv Neurol Disord 13:175628642090235. https://doi.org/10.1177/1756286420902358

Article  CAS  Google Scholar 

Kranendonk van, Treurniet KM, Boers AMM, Berkhemer OA, Chalos V, Lingsma HF, Zwam van, Diederik WJ Dippel, Roos YBWEM, Marquering HA, Majoie CBLM (2019) Clinical and imaging markers associated with hemorrhagic transformation in patients with acute ischemic stroke. Stroke 50:2037–2043. https://doi.org/10.1161/strokeaha.118.024255

Kalinin MN, Khasanova DR, Ibatullin MM (2017) The hemorrhagic transformation index score: a prediction tool in middle cerebral artery ischemic stroke. BMC Neurology 17. https://doi.org/10.1186/s12883-017-0958-3

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an Updated Guideline for Reporting Systematic Reviews. Br Med J 372. https://doi.org/10.1136/bmj.n71

Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF (2008) Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biometrical journal Biometrische Zeitschrift 50:419–430. https://doi.org/10.1002/bimj.200710415

Article  PubMed  PubMed Central  Google Scholar 

Whiting PF (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Article  PubMed  Google Scholar 

Kocak B, Tugba Akinci D’Antonoli, Mercaldo N, Alberich-Bayarri A, Baessler B, Ambrosini I, Andreychenko AE, Bakas S, Keno Bressem, Buvat I, Cannella R, Luca Alessandro Cappellini, Armando Ugo Cavallo, Chepelev LL, Chi L, Aydin Demircioglu, deSouza NM, Dietzel M, Salvatore Claudio Fanni, Fedorov A, Fournier LS, Giannini V, Rossano Girometti, Georgios Kalarakis, Kelly BS, Klontzas ME, Koh D-M, Kotter E, Ho Yun Lee, Maas M, Marti-Bonmati L, Henning Müller, Obuchowski N, Orlhac F, Papanikolaou N, Petrash E, Pfaehler E, Pinto D, Ponsiglione A, Sabater S, Sardanelli F, Philipp Seeböck, Sijtsema NM, Stanzione A, Traverso A, Ugga L, Vallières M, Dijk van, Griethuysen van, Hamersvelt van, Peter van Ooijen, Federica Vernuccio, Wang

Comments (0)

No login
gif