Katan M, Luft A (2018) Global burden of stroke. Semin Neurol 38:208–211. https://doi.org/10.1055/s-0038-1649503
Broderick JP, Schroth G (2013) What the SWIFT and TREVO II trials tell us about the role of endovascular therapy for acute stroke. Stroke 44:1761–1764. https://doi.org/10.1161/strokeaha.113.000740
Article PubMed PubMed Central Google Scholar
Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 44:870–947. https://doi.org/10.1161/str.0b013e318284056a
Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CBLM, van der Lugt A, de Miquel MA, Donnan GA, Roos YBWEM, Bonafe A, Jahan R, Diener H-C, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BCV, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. The Lancet 387:1723–1731. https://doi.org/10.1016/s0140-6736(16)00163-x
Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, Lennon O, Meschia JF, Nguyen TN, Pollak PM, Santangeli P, Sharrief AZ, Smith SC, Turan TN, Williams LS (2021) 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the american heart association/american stroke association. Stroke 52:e364–e467. https://doi.org/10.1161/str.0000000000000375
Panni P, Gory B, Xie Y, Consoli A, Desilles J-P, Mazighi M, Labreuche J, Piotin M, Turjman F, Eker OF, Bracard S, Anxionnat R, Richard S, Hossu G, Blanc R, Lapergue B, Redjem H, Escalard S, Redjem H, Ciccio G, Smajda S, Fahed R, Obadia M, Sabben C, Corabianu O, de Broucker T, Smadja D, Alamowitch S, Ille O, Manchon E, Garcia P-Y, Taylor G, Maacha MB, Bourdain F, Decroix J-P, Wang A, Evrard S, Tchikviladze M, Coskun O, Maria FD, Rodesh G, Leguen M, Tisserand M, Pico F, Rakotoharinandrasana H, Tassan P, Poll R, Nighoghossian N, Labeyrie PE, Riva R, Derex L, Cho T-H, Mechtouff L, Lukaszewicz AC, Philippeau F, Cakmak S, Blanc-Lasserre K, Vallet A-E (2019) Acute stroke with large ischemic core treated by thrombectomy. Stroke 50:1164–1171. https://doi.org/10.1161/strokeaha.118.024295
Ande SR, Grynspan J, Aviv RI, Jai, (2021) Imaging for predicting hemorrhagic transformation of acute ischemic stroke—a narrative review. Can Assoc Radiol J 73:194–202. https://doi.org/10.1177/08465371211018369
Li W, Xing X, Wen C, Liu H (2022) Risk factors and functional outcome were associated with hemorrhagic transformation after mechanical thrombectomy for acute large vessel occlusion stroke. J Neurosurg Sci 67:585–590. https://doi.org/10.23736/s0390-5616.20.05141-
Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH (2022) Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res 130:1204–1229. https://doi.org/10.1161/circresaha.121.319949
Article CAS PubMed PubMed Central Google Scholar
Xing Y, Guo Z-N, Yan S, Jin H, Wang S, Yang Y (2014) Increased globulin and its association with hemorrhagic transformation in patients receiving intra-arterial thrombolysis therapy. Neurosci Bull/Neurosci Bull 30:469–476. https://doi.org/10.1007/s12264-013-1440-x
Article CAS PubMed Google Scholar
He J, Fu F, Zhang W, Zhan Z, Cheng Z (2022) Prognostic significance of the clinical and radiological haemorrhagic transformation subtypes in acute ischaemic stroke: a systematic review and meta-analysis. Eur J Neurol 29:3449–3459. https://doi.org/10.1111/ene.15482
van Kranendonk KR, Treurniet KM, Boers AMM, Berkhemer OA, van den Berg LA, Chalos V, Lingsma HF, van Zwam WH, van der Lugt A, van Oostenbrugge RJ, Dippel DWJ, Roos YBWEM, Marquering HA, Majoie CBLM (2018) Hemorrhagic transformation is associated with poor functional outcome in patients with acute ischemic stroke due to a large vessel occlusion. J NeuroInterventional Surg 11:464–468. https://doi.org/10.1136/neurintsurg-2018-014141
Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 28:31–38. https://doi.org/10.1038/s41591-021-01614-0
Article CAS PubMed Google Scholar
Cui S, Song H, Ren H, Wang X, Xie Z, Wen H, Li Y (2022) Prediction of hemorrhagic complication after thrombolytic therapy based on multimodal data from multiple centers: an approach to machine learning and system implementation. J Personalized Med 12:2052. https://doi.org/10.3390/jpm12122052
Heo J, Sim Y, Kim BM, Kim DJ, Kim YD, Nam HS, Choi YS, Lee S-K, Kim EY, Sohn B (2024) Radiomics using non-contrast CT to predict hemorrhagic transformation risk in stroke patients undergoing revascularization. Eur Radiol 34:6005–6015. https://doi.org/10.1007/s00330-024-10618-6
Heo J, Yoon Y, Han HJ, Kim J-J, Park KY, Kim BM, Kim DJ, Kim YD, Nam HS, Lee S-K, Sohn B (2023) Prediction of cerebral hemorrhagic transformation after thrombectomy using a deep learning of dual-energy CT. Eur Radiol 34:3840–3848. https://doi.org/10.1007/s00330-023-10432-6
Jiang L, Zhou L, Yong W, Cui J, Geng W, Chen H, Zou J, Chen Y, Yin X, Chen Y (2021) A deep learning-based model for prediction of hemorrhagic transformation after stroke. Brain Pathol 33:e13023. https://doi.org/10.1111/bpa.13023
Article PubMed PubMed Central Google Scholar
Zhang Y, Xie G, Zhang L, Li J, Tang W, Wang D, Yang L, Li K (2024) Constructing Machine Learning Models Based on non-contrast CT Radiomics to Predict Hemorrhagic Transformation after stoke: a two-center Study. Front Neurol 15. https://doi.org/10.3389/fneur.2024.1413795
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169
Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJWL, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248. https://doi.org/10.1016/j.mri.2012.06.010
Article PubMed PubMed Central Google Scholar
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25:24–29. https://doi.org/10.1038/s41591-018-0316-z
Article CAS PubMed Google Scholar
Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380:1347–1358. https://doi.org/10.1056/nejmra1814259
Choi J-M, Seo S-Y, Kim P-J, Kim Y-S, Lee S-H, Sohn J-H, Kim D-K, Lee J-J, Kim C (2021) Prediction of hemorrhagic transformation after ischemic stroke using machine learning. J Personalized Med 11:863. https://doi.org/10.3390/jpm11090863
Li X, Xu C, Shang C, Wang Y, Xu J, Zhou Q (2023) Machine learning predicts the risk of hemorrhagic transformation of acute cerebral infarction and in-hospital death. Comput Methods Programs Biomed 237:107582–107582. https://doi.org/10.1016/j.cmpb.2023.107582
Wang F, Huang Y, Xia Y, Zhang W, Fang K, Zhou X, Yu X, Cheng X, Li G, Wang X, Luo G, Wu D, Liu X, Campbell BCV, Dong Q, Zhao Y (2020) Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model. Ther Adv Neurol Disord 13:175628642090235. https://doi.org/10.1177/1756286420902358
Kranendonk van, Treurniet KM, Boers AMM, Berkhemer OA, Chalos V, Lingsma HF, Zwam van, Diederik WJ Dippel, Roos YBWEM, Marquering HA, Majoie CBLM (2019) Clinical and imaging markers associated with hemorrhagic transformation in patients with acute ischemic stroke. Stroke 50:2037–2043. https://doi.org/10.1161/strokeaha.118.024255
Kalinin MN, Khasanova DR, Ibatullin MM (2017) The hemorrhagic transformation index score: a prediction tool in middle cerebral artery ischemic stroke. BMC Neurology 17. https://doi.org/10.1186/s12883-017-0958-3
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an Updated Guideline for Reporting Systematic Reviews. Br Med J 372. https://doi.org/10.1136/bmj.n71
Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF (2008) Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biometrical journal Biometrische Zeitschrift 50:419–430. https://doi.org/10.1002/bimj.200710415
Article PubMed PubMed Central Google Scholar
Whiting PF (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Kocak B, Tugba Akinci D’Antonoli, Mercaldo N, Alberich-Bayarri A, Baessler B, Ambrosini I, Andreychenko AE, Bakas S, Keno Bressem, Buvat I, Cannella R, Luca Alessandro Cappellini, Armando Ugo Cavallo, Chepelev LL, Chi L, Aydin Demircioglu, deSouza NM, Dietzel M, Salvatore Claudio Fanni, Fedorov A, Fournier LS, Giannini V, Rossano Girometti, Georgios Kalarakis, Kelly BS, Klontzas ME, Koh D-M, Kotter E, Ho Yun Lee, Maas M, Marti-Bonmati L, Henning Müller, Obuchowski N, Orlhac F, Papanikolaou N, Petrash E, Pfaehler E, Pinto D, Ponsiglione A, Sabater S, Sardanelli F, Philipp Seeböck, Sijtsema NM, Stanzione A, Traverso A, Ugga L, Vallières M, Dijk van, Griethuysen van, Hamersvelt van, Peter van Ooijen, Federica Vernuccio, Wang
Comments (0)