Influence of Membrane Curvature on the Energy Barrier of Pore Formation

Watson H. 2015. Biological membranes. Essays Biochem. 59, 43–69.

Article  PubMed  PubMed Central  Google Scholar 

Casares D., Escribá P. V., Rosselló C. A. 2019. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20, 2167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J., Huang X. 2020. Lipid metabolism at membrane contacts: Dynamics and functions beyond lipid homeostasis. Front. Cell Dev. Biol. 8, 615856.

Article  PubMed  PubMed Central  Google Scholar 

Ammendolia D.A., Bement W.M., Brumell J.H. 2021. Plasma membrane integrity: Implications for health and disease. BMC Biol. 19, 71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni C.V. 2012. Lipid crystallization: From self-assembly to hierarchical and biological ordering. Nanoscale. 4, 5779.

Article  CAS  PubMed  Google Scholar 

Subczynski W.K., Wisniewska A., Yin J.-J., Hyde J.S., Kusumi A. 1994. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry. 33, 7670–7681.

Article  CAS  PubMed  Google Scholar 

Kilinc D., Gallo G., Barbee K. A. 2008. Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp. Neurol. 212, 422–430.

Article  CAS  PubMed  Google Scholar 

Khandelia H., Ipsen J.H., Mouritsen O.G. 2008. The impact of peptides on lipid membranes. Biochim. Biophys. Acta – Biomembr. 1778, 1528–1536.

Agner G., Kaulin Y.A., Schagina L.V., Takemoto J.Y., Blasko K. 2000. Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes. Biochim. Biophys. Acta – Biomembr. 1466, 79–86.

Runas K.A., Malmstadt N. 2015. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter. 11, 499–505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van der Paal J., Neyts E.C., Verlackt C.C. W., Bogaerts A. 2016. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7, 489–498.

Article  CAS  PubMed  Google Scholar 

Mulvihill E., Sborgi L., Mari S.A., Pfreundschuh M., Hiller S., Müller D.J. 2018. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 37, e98321.

Article  PubMed  PubMed Central  Google Scholar 

Westman J., Hube B., Fairn G.D. 2019. Integrity under stress: Host membrane remodelling and damage by fungal pathogens. Cell. Microbiol. 21, e13016.

Article  CAS  PubMed  Google Scholar 

Yang N.J., Hinner M.J. 2015. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Site-Specific Protein Labeling: Methods and Protocols. 29–53.

Cohen F.S., Melikyan G.B. 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14.

Article  CAS  PubMed  Google Scholar 

Mehier-Humbert S., Bettinger T., Yan F., Guy R.H. 2005. Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery. J. Control. Release. 104, 213–222.

Article  CAS  PubMed  Google Scholar 

Basañez G., Soane L., Hardwick J.M. 2012. A new view of the lethal apoptotic pore. PLoS Biol. 10, e1001399.

Article  PubMed  PubMed Central  Google Scholar 

Flores-Romero H., Ros U., Garcia-Saez A.J. 2020. Pore formation in regulated cell death. EMBO J. 39, e105753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akimov S.A., Aleksandrova V.V., Galimzyanov T.R., Bashkirov P.V., Batishchev O.V. 2017. Mechanism of pore formation in stearoyl-oleoyl-phosphatidylcholine membranes subjected to lateral tension. Biochem. (Moscow), Suppl. Series A, Membr. Cell Biol. 11, 193–205.

Google Scholar 

Hub J.S., Awasthi N. 2017. Probing a continuous polar defect: A reaction coordinate for pore formation in lipid membranes. J. Chem. Theory Comput. 13, 2352–2366.

Article  CAS  PubMed  Google Scholar 

Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.

Article  PubMed  PubMed Central  Google Scholar 

Abidor I.G., Arakelyan V.B., Chernomordik L.V., Chizmadzhev Y.A., Pastushenko V.F., Tarasevich M.P. 1979. Electric breakdown of bilayer lipid membranes. J. Electroanal. Chem. Interfacial Electrochem. 104, 37–52.

Article  Google Scholar 

Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.

Article  PubMed  PubMed Central  Google Scholar 

Evans E., Heinrich V., Ludwig F., Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frolov V.A., Zimmerberg J. 2010. Cooperative elastic stresses, the hydrophobic effect, and lipid tilt in membrane remodeling. FEBS Lett. 584, 1824–1829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujii S., Matsuura T., Yomo T. 2015 Membrane curvature affects the formation of α-hemolysin nanopores. ACS Chem. Biol. 10, 1694–1701.

Article  CAS  PubMed  Google Scholar 

Tabaei S.R., Rabe M., Zhdanov V.P., Cho N.-J., Höök F. 2012. Single vesicle analysis reveals nanoscale membrane curvature selective pore formation in lipid membranes by an antiviral α-helical peptide. Nano Lett. 12, 5719–5725.

Article  CAS  PubMed  Google Scholar 

Bassereau P., Jin R., Baumgart T., Deserno M., Dimova R., Frolov V.A., Bashkirov P.V., Grubmüller H., Jahn R., Risselada H.J., Johannes L., Kozlov M.M., Lipowsky R., Pucadyil T.J, Zeno W.F., Stachowiak J.C., Stamou D., Breuer A., Lauritsen L., Simon C., Sykes C., Voth G. A., Weikl T.R. 2018. The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D. Appl. Phys. 51, 343001.

Article  PubMed  PubMed Central  Google Scholar 

Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3, 323–335.

Article  CAS  Google Scholar 

Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2001. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA. 98, 7235–7240.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shnyrova A.V., Bashkirov P.V., Akimov S.A., Pucadyil T.J., Zimmerberg J., Schmid S.L., Frolov V.A. 2013. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science. 339, 1433–1436.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zucker B., Kozlov M.M. 2022. Mechanism of shaping membrane nanostructures of endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 119, e2116142119.

Article  CAS  PubMed  Google Scholar 

McMahon H. T., Kozlov M.M., Martens S. 2010. Membrane curvature in synaptic vesicle fusion and beyond. Cell. 140, 601–605.

Article  CAS  PubMed 

Comments (0)

No login
gif