Watson H. 2015. Biological membranes. Essays Biochem. 59, 43–69.
Article PubMed PubMed Central Google Scholar
Casares D., Escribá P. V., Rosselló C. A. 2019. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20, 2167.
Article CAS PubMed PubMed Central Google Scholar
Xu J., Huang X. 2020. Lipid metabolism at membrane contacts: Dynamics and functions beyond lipid homeostasis. Front. Cell Dev. Biol. 8, 615856.
Article PubMed PubMed Central Google Scholar
Ammendolia D.A., Bement W.M., Brumell J.H. 2021. Plasma membrane integrity: Implications for health and disease. BMC Biol. 19, 71.
Article CAS PubMed PubMed Central Google Scholar
Kulkarni C.V. 2012. Lipid crystallization: From self-assembly to hierarchical and biological ordering. Nanoscale. 4, 5779.
Article CAS PubMed Google Scholar
Subczynski W.K., Wisniewska A., Yin J.-J., Hyde J.S., Kusumi A. 1994. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry. 33, 7670–7681.
Article CAS PubMed Google Scholar
Kilinc D., Gallo G., Barbee K. A. 2008. Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp. Neurol. 212, 422–430.
Article CAS PubMed Google Scholar
Khandelia H., Ipsen J.H., Mouritsen O.G. 2008. The impact of peptides on lipid membranes. Biochim. Biophys. Acta – Biomembr. 1778, 1528–1536.
Agner G., Kaulin Y.A., Schagina L.V., Takemoto J.Y., Blasko K. 2000. Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes. Biochim. Biophys. Acta – Biomembr. 1466, 79–86.
Runas K.A., Malmstadt N. 2015. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter. 11, 499–505.
Article CAS PubMed PubMed Central Google Scholar
Van der Paal J., Neyts E.C., Verlackt C.C. W., Bogaerts A. 2016. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7, 489–498.
Article CAS PubMed Google Scholar
Mulvihill E., Sborgi L., Mari S.A., Pfreundschuh M., Hiller S., Müller D.J. 2018. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 37, e98321.
Article PubMed PubMed Central Google Scholar
Westman J., Hube B., Fairn G.D. 2019. Integrity under stress: Host membrane remodelling and damage by fungal pathogens. Cell. Microbiol. 21, e13016.
Article CAS PubMed Google Scholar
Yang N.J., Hinner M.J. 2015. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Site-Specific Protein Labeling: Methods and Protocols. 29–53.
Cohen F.S., Melikyan G.B. 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14.
Article CAS PubMed Google Scholar
Mehier-Humbert S., Bettinger T., Yan F., Guy R.H. 2005. Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery. J. Control. Release. 104, 213–222.
Article CAS PubMed Google Scholar
Basañez G., Soane L., Hardwick J.M. 2012. A new view of the lethal apoptotic pore. PLoS Biol. 10, e1001399.
Article PubMed PubMed Central Google Scholar
Flores-Romero H., Ros U., Garcia-Saez A.J. 2020. Pore formation in regulated cell death. EMBO J. 39, e105753.
Article CAS PubMed PubMed Central Google Scholar
Akimov S.A., Aleksandrova V.V., Galimzyanov T.R., Bashkirov P.V., Batishchev O.V. 2017. Mechanism of pore formation in stearoyl-oleoyl-phosphatidylcholine membranes subjected to lateral tension. Biochem. (Moscow), Suppl. Series A, Membr. Cell Biol. 11, 193–205.
Hub J.S., Awasthi N. 2017. Probing a continuous polar defect: A reaction coordinate for pore formation in lipid membranes. J. Chem. Theory Comput. 13, 2352–2366.
Article CAS PubMed Google Scholar
Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 12152.
Article PubMed PubMed Central Google Scholar
Abidor I.G., Arakelyan V.B., Chernomordik L.V., Chizmadzhev Y.A., Pastushenko V.F., Tarasevich M.P. 1979. Electric breakdown of bilayer lipid membranes. J. Electroanal. Chem. Interfacial Electrochem. 104, 37–52.
Akimov S.A., Volynsky P.E., Galimzyanov T.R., Kuzmin P.I., Pavlov K.V., Batishchev O.V. 2017. Pore formation in lipid membrane II: Energy landscape under external stress. Sci. Rep. 7, 12509.
Article PubMed PubMed Central Google Scholar
Evans E., Heinrich V., Ludwig F., Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350.
Article CAS PubMed PubMed Central Google Scholar
Frolov V.A., Zimmerberg J. 2010. Cooperative elastic stresses, the hydrophobic effect, and lipid tilt in membrane remodeling. FEBS Lett. 584, 1824–1829.
Article CAS PubMed PubMed Central Google Scholar
Fujii S., Matsuura T., Yomo T. 2015 Membrane curvature affects the formation of α-hemolysin nanopores. ACS Chem. Biol. 10, 1694–1701.
Article CAS PubMed Google Scholar
Tabaei S.R., Rabe M., Zhdanov V.P., Cho N.-J., Höök F. 2012. Single vesicle analysis reveals nanoscale membrane curvature selective pore formation in lipid membranes by an antiviral α-helical peptide. Nano Lett. 12, 5719–5725.
Article CAS PubMed Google Scholar
Bassereau P., Jin R., Baumgart T., Deserno M., Dimova R., Frolov V.A., Bashkirov P.V., Grubmüller H., Jahn R., Risselada H.J., Johannes L., Kozlov M.M., Lipowsky R., Pucadyil T.J, Zeno W.F., Stachowiak J.C., Stamou D., Breuer A., Lauritsen L., Simon C., Sykes C., Voth G. A., Weikl T.R. 2018. The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D. Appl. Phys. 51, 343001.
Article PubMed PubMed Central Google Scholar
Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3, 323–335.
Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2001. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA. 98, 7235–7240.
Article CAS PubMed PubMed Central Google Scholar
Shnyrova A.V., Bashkirov P.V., Akimov S.A., Pucadyil T.J., Zimmerberg J., Schmid S.L., Frolov V.A. 2013. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science. 339, 1433–1436.
Article CAS PubMed PubMed Central Google Scholar
Zucker B., Kozlov M.M. 2022. Mechanism of shaping membrane nanostructures of endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 119, e2116142119.
Article CAS PubMed Google Scholar
McMahon H. T., Kozlov M.M., Martens S. 2010. Membrane curvature in synaptic vesicle fusion and beyond. Cell. 140, 601–605.
Comments (0)