Interaction of Albumin with Angiotensin-I-Converting Enzyme According to Molecular Modeling Data

Whelton P.K., Carey R.M., Aronow W.S., Casey D.E. Jr., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., MacLaughlin E.J., Muntner P., Ovbiagele B., Smith. S.C. Jr., Spencer C.C., Stafford R.S., Taler S.J., Thomas R.J., Williams K.A. Sr., Williamson J.D., Wright J.T. Jr. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/ APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 71 (19), e127–e248. https://doi.org/10.1016/j.jacc.2017.11.006

Article  PubMed  Google Scholar 

Howard G., Downward G., Bowie D. 2001. Human serum albumin induced hypotension in the postoperative phase of cardiac surgery. Anaesth. Intensive Care. 29 (6), 591–594. https://doi.org/10.1177/0310057X0102900604

Article  PubMed  Google Scholar 

Oda E. 2014. Decreased serum albumin predicts hypertension in a Japanese health screening population. Intern. Med. 53 (7), 655–660. https://doi.org/10.2169/internalmedicine.53.1894

Article  PubMed  Google Scholar 

Klauser R.J., Robinson C.J., Marinkovic D.V., Erdös E.G. 1979. Inhibition of human peptidyl dipeptidase (angiotensin I converting enzyme: kininase II) by human serum albumin and its fragments. Hypertension. 1 (3), 281–286. https://doi.org/10.1161/01.hyp.1.3.281

Article  PubMed  Google Scholar 

Fagyas M., Úri K., Siket I.M., Fülöp G.Á., Csató V., Daragó A., Boczán J., Bányai E., Szentkirályi I.E., Maros T.M., Szerafin T., Édes I., Papp Z., Tóth A. 2014. New perspectives in the renin-angiotensin-aldosterone system (RAAS) II: Albumin suppresses angiotensin converting enzyme (ACE) activity in human. PLoS One. 9 (4), e87844. https://doi.org/10.1371/journal.pone.0087844

Article  PubMed  PubMed Central  Google Scholar 

Danilov S.M., Jain M.S., Petukhov P.A, Kurilova O.V., Ilinsky V.V., Trakhtman P.E., Dadali E.L., Samokhodskaya L.M., Kamalov A.A., Kost O.A. 2023. Blood ACE Phenotyping for personalized medicine: Revelation of patients with conformationally altered ACE. Biomedicines. 11 (2), 534. https://doi.org/10.3390/biomedicines11020534

Article  PubMed  PubMed Central  Google Scholar 

Kozuch A.J., Petukhov P.A., Fagyas M., Popova I.A., Lindeblad M.O., Bobkov A.P., Kamalov A.A., Toth A., Dudek S.M., Danilov S.M. 2023. Urinary ACE phenotyping as a research and diagnostic tool: Identification of sex-dependent ACE immunoreactivity. Biomedicines. 11 (3), 953. https://doi.org/10.3390/biomedicines11030953

Article  PubMed  PubMed Central  Google Scholar 

Danilov S.M., Adzhubei I.A., Kozuch A.J., Petukhov P.A., Popova I.A., Choudhury A., Sengupta D., Dudek S.M. 2024. Carriers of heterozygous loss-of-function ACE mutations are at risk for Alzheimer’s disease. Biomedicines. 12 (1), 162. https://doi.org/10.3390/biomedicines12010162

Article  PubMed  PubMed Central  Google Scholar 

Enyedi E.E., Petukhov P.A., Kozuch A.J., Dudek S.M., Toth A., Fagyas M., Danilov S.M. 2024. ACE phenotyping in human blood and tissues: Revelation of ACE outliers and sex differences in ACE sialylation. Biomedicines. 12 (5), 940. https://doi.org/10.3390/biomedicines12050940

Article  PubMed  PubMed Central  Google Scholar 

Kragh-Hansen U. 1990. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull. 37 (1), 57–84.

PubMed  Google Scholar 

Kragh-Hansen U., Brennan S.O., Minchiotti L., Galliano M. 1994. Modified high-affinity binding of Ni2+, Ca2+ and Zn2+ to natural mutants of human serum albumin and proalbumin. Biochem. J. 301 (Pt 1), 217–223. https://doi.org/10.1042/bj3010217

Article  PubMed  PubMed Central  Google Scholar 

Kragh-Hansen U., Saito S., Nishi K., Anraku M., Otagiri M. 2005. Effect of genetic variation on the thermal stability of human serum albumin. Biochim. Biophys. Acta. 1747 (1), 81–88. https://doi.org/10.1016/j.bbapap.2004.09.025

Kragh-Hansen U., Minchiotti L., Galliano M., Peters T. Jr. 2013. Human serum albumin isoforms: Genetic and molecular aspects and functional consequences. Biochim. Biophys. Acta. 1830 (12), 5405–5417. https://doi.org/10.1016/j.bbagen.2013.03.026

Caridi G., Lugani F., Angeletti A., Campagnoli M., Galliano M., Minchiotti L. 2022. Variations in the human serum albumin gene: Molecular and functional aspects. Int. J. Mol. Sci. 23 (3), 1159. https://doi.org/10.3390/ijms23031159

Article  PubMed  PubMed Central  Google Scholar 

Hein K.L., Kragh-Hansen U., Morth J.P., Jeppesen M.D., Otzen D., Møller J.V., Nissen P. 2010. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol. 171 (3), 353–360. https://doi.org/10.1016/j.jsb.2010.03.014

Article  PubMed  Google Scholar 

Lubbe L., Sewell B.T., Woodward J.D., Sturrock E.D. 2022. Cryo-EM reveals mechanisms of angiotensin I‑converting enzyme allostery and dimerization. EMBO J. 41 (16), e110550. https://doi.org/10.15252/embj.2021110550

Article  PubMed  PubMed Central  Google Scholar 

Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

Article  PubMed  Google Scholar 

Singh A., Copeland M.M., Kundrotas P.J., Vakser I.A. 2024. GRAMM web server for protein docking. Methods Mol. Biol. 2714, 101–112. https://doi.org/10.1007/978-1-0716-3441-7_5

Article  PubMed  Google Scholar 

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001

Article  Google Scholar 

Foloppe N., MacKerell A.D. Jr. 2000. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G

Article  Google Scholar 

Jorgensen W.L. 1981. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335–340.

Article  Google Scholar 

Bussi G., Zykova-Timan T., Parrinello M. 2009. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 130 (7), 074101. https://doi.org/10.1063/1.3073889

Article  PubMed  Google Scholar 

Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196

Article  Google Scholar 

Darden T., York D., Pedersen L. 1993. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 3, 10089–10092. https://doi.org/10.1063/1.464397

Article  Google Scholar 

Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. 1997. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem. 18, 1463–1473. https://doi.org/10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H

Article  Google Scholar 

He X.M., Carter D.C. 1992. Atomic structure and chemistry of human serum albumin. Nature. 358, 209–215. https://doi.org/10.1038/358209a0

Article  PubMed  Google Scholar 

Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., Notari S., Ascenzi P. 2005. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 57, 787–796. https://doi.org/10.1080/15216540500404093

Article  PubMed  Google Scholar 

Sudlow G., Birkett D.J., Wade D.N. 1976. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12 (6), 1052–1061.

PubMed  Google Scholar 

Belinskaia D.A., Voronina P.A., Vovk M.A., Shmurak V.I., Batalova A.A., Jenkins R.O., Goncharov N.V. 2021. Esterase activity of serum albumin studied by 1H NMR spectroscopy and molecular modelling. Int. J. Mol. Sci. 22 (19), 10593. https://doi.org/10.3390/ijms221910593

Article  PubMed  PubMed Central  Google Scholar 

Nakashima F., Shibata T., Kamiya K., Yoshitake J., Kikuchi R., Matsushita T., Ishii I., Giménez-Bastida J.A., Schneider C., Uchida K. 2018. Structural and functional insights into S-thiolation of human serum albumins. Sci. Rep. 8 (1), 932. https://doi.org/10.1038/s41598-018-19610-9

Article  PubMed  PubMed Central  Google Scholar 

Qiu H.Y., Hou N.N., Shi J.F., Liu Y.P., Kan C.X., Han F., Sun X.D. 2021. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J. Diabetes. 12, 1057–1069. https://doi.org/10.4239/wjd.v12.i7.1057

Article  PubMed  PubMed Central  Google Scholar 

Wei L., Alhenc-Gelas F., Corvol P., Clauser E. 1991. The two homologous domains of human angiotensin I‑converting enzyme are both catalytically active. J. Biol. Chem. 266 (14), 9002–9008.

Comments (0)

No login
gif