Whelton P.K., Carey R.M., Aronow W.S., Casey D.E. Jr., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., MacLaughlin E.J., Muntner P., Ovbiagele B., Smith. S.C. Jr., Spencer C.C., Stafford R.S., Taler S.J., Thomas R.J., Williams K.A. Sr., Williamson J.D., Wright J.T. Jr. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/ APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 71 (19), e127–e248. https://doi.org/10.1016/j.jacc.2017.11.006
Howard G., Downward G., Bowie D. 2001. Human serum albumin induced hypotension in the postoperative phase of cardiac surgery. Anaesth. Intensive Care. 29 (6), 591–594. https://doi.org/10.1177/0310057X0102900604
Oda E. 2014. Decreased serum albumin predicts hypertension in a Japanese health screening population. Intern. Med. 53 (7), 655–660. https://doi.org/10.2169/internalmedicine.53.1894
Klauser R.J., Robinson C.J., Marinkovic D.V., Erdös E.G. 1979. Inhibition of human peptidyl dipeptidase (angiotensin I converting enzyme: kininase II) by human serum albumin and its fragments. Hypertension. 1 (3), 281–286. https://doi.org/10.1161/01.hyp.1.3.281
Fagyas M., Úri K., Siket I.M., Fülöp G.Á., Csató V., Daragó A., Boczán J., Bányai E., Szentkirályi I.E., Maros T.M., Szerafin T., Édes I., Papp Z., Tóth A. 2014. New perspectives in the renin-angiotensin-aldosterone system (RAAS) II: Albumin suppresses angiotensin converting enzyme (ACE) activity in human. PLoS One. 9 (4), e87844. https://doi.org/10.1371/journal.pone.0087844
Article PubMed PubMed Central Google Scholar
Danilov S.M., Jain M.S., Petukhov P.A, Kurilova O.V., Ilinsky V.V., Trakhtman P.E., Dadali E.L., Samokhodskaya L.M., Kamalov A.A., Kost O.A. 2023. Blood ACE Phenotyping for personalized medicine: Revelation of patients with conformationally altered ACE. Biomedicines. 11 (2), 534. https://doi.org/10.3390/biomedicines11020534
Article PubMed PubMed Central Google Scholar
Kozuch A.J., Petukhov P.A., Fagyas M., Popova I.A., Lindeblad M.O., Bobkov A.P., Kamalov A.A., Toth A., Dudek S.M., Danilov S.M. 2023. Urinary ACE phenotyping as a research and diagnostic tool: Identification of sex-dependent ACE immunoreactivity. Biomedicines. 11 (3), 953. https://doi.org/10.3390/biomedicines11030953
Article PubMed PubMed Central Google Scholar
Danilov S.M., Adzhubei I.A., Kozuch A.J., Petukhov P.A., Popova I.A., Choudhury A., Sengupta D., Dudek S.M. 2024. Carriers of heterozygous loss-of-function ACE mutations are at risk for Alzheimer’s disease. Biomedicines. 12 (1), 162. https://doi.org/10.3390/biomedicines12010162
Article PubMed PubMed Central Google Scholar
Enyedi E.E., Petukhov P.A., Kozuch A.J., Dudek S.M., Toth A., Fagyas M., Danilov S.M. 2024. ACE phenotyping in human blood and tissues: Revelation of ACE outliers and sex differences in ACE sialylation. Biomedicines. 12 (5), 940. https://doi.org/10.3390/biomedicines12050940
Article PubMed PubMed Central Google Scholar
Kragh-Hansen U. 1990. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull. 37 (1), 57–84.
Kragh-Hansen U., Brennan S.O., Minchiotti L., Galliano M. 1994. Modified high-affinity binding of Ni2+, Ca2+ and Zn2+ to natural mutants of human serum albumin and proalbumin. Biochem. J. 301 (Pt 1), 217–223. https://doi.org/10.1042/bj3010217
Article PubMed PubMed Central Google Scholar
Kragh-Hansen U., Saito S., Nishi K., Anraku M., Otagiri M. 2005. Effect of genetic variation on the thermal stability of human serum albumin. Biochim. Biophys. Acta. 1747 (1), 81–88. https://doi.org/10.1016/j.bbapap.2004.09.025
Kragh-Hansen U., Minchiotti L., Galliano M., Peters T. Jr. 2013. Human serum albumin isoforms: Genetic and molecular aspects and functional consequences. Biochim. Biophys. Acta. 1830 (12), 5405–5417. https://doi.org/10.1016/j.bbagen.2013.03.026
Caridi G., Lugani F., Angeletti A., Campagnoli M., Galliano M., Minchiotti L. 2022. Variations in the human serum albumin gene: Molecular and functional aspects. Int. J. Mol. Sci. 23 (3), 1159. https://doi.org/10.3390/ijms23031159
Article PubMed PubMed Central Google Scholar
Hein K.L., Kragh-Hansen U., Morth J.P., Jeppesen M.D., Otzen D., Møller J.V., Nissen P. 2010. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol. 171 (3), 353–360. https://doi.org/10.1016/j.jsb.2010.03.014
Lubbe L., Sewell B.T., Woodward J.D., Sturrock E.D. 2022. Cryo-EM reveals mechanisms of angiotensin I‑converting enzyme allostery and dimerization. EMBO J. 41 (16), e110550. https://doi.org/10.15252/embj.2021110550
Article PubMed PubMed Central Google Scholar
Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Singh A., Copeland M.M., Kundrotas P.J., Vakser I.A. 2024. GRAMM web server for protein docking. Methods Mol. Biol. 2714, 101–112. https://doi.org/10.1007/978-1-0716-3441-7_5
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
Foloppe N., MacKerell A.D. Jr. 2000. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
Jorgensen W.L. 1981. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335–340.
Bussi G., Zykova-Timan T., Parrinello M. 2009. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 130 (7), 074101. https://doi.org/10.1063/1.3073889
Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196
Darden T., York D., Pedersen L. 1993. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 3, 10089–10092. https://doi.org/10.1063/1.464397
Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. 1997. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem. 18, 1463–1473. https://doi.org/10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H
He X.M., Carter D.C. 1992. Atomic structure and chemistry of human serum albumin. Nature. 358, 209–215. https://doi.org/10.1038/358209a0
Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., Notari S., Ascenzi P. 2005. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 57, 787–796. https://doi.org/10.1080/15216540500404093
Sudlow G., Birkett D.J., Wade D.N. 1976. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12 (6), 1052–1061.
Belinskaia D.A., Voronina P.A., Vovk M.A., Shmurak V.I., Batalova A.A., Jenkins R.O., Goncharov N.V. 2021. Esterase activity of serum albumin studied by 1H NMR spectroscopy and molecular modelling. Int. J. Mol. Sci. 22 (19), 10593. https://doi.org/10.3390/ijms221910593
Article PubMed PubMed Central Google Scholar
Nakashima F., Shibata T., Kamiya K., Yoshitake J., Kikuchi R., Matsushita T., Ishii I., Giménez-Bastida J.A., Schneider C., Uchida K. 2018. Structural and functional insights into S-thiolation of human serum albumins. Sci. Rep. 8 (1), 932. https://doi.org/10.1038/s41598-018-19610-9
Article PubMed PubMed Central Google Scholar
Qiu H.Y., Hou N.N., Shi J.F., Liu Y.P., Kan C.X., Han F., Sun X.D. 2021. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J. Diabetes. 12, 1057–1069. https://doi.org/10.4239/wjd.v12.i7.1057
Article PubMed PubMed Central Google Scholar
Wei L., Alhenc-Gelas F., Corvol P., Clauser E. 1991. The two homologous domains of human angiotensin I‑converting enzyme are both catalytically active. J. Biol. Chem. 266 (14), 9002–9008.
Comments (0)