Shao J., Liu Y., Gao D., Tu J., Yang F. 2021. Neural burst firing and its roles in mental and neurological disorders. Front. Cell. Neurosci. 15, 741292. https://doi.org/10.3389/fncel.2021.741292
Article PubMed PubMed Central Google Scholar
Targa Dias Anastacio H., Matosin N., Ooi L. 2022. Neuronal hyperexcitability in Alzheimer’s disease: What are the drivers behind this aberrant phenotype? Transl. Psychiatry. 12, 257. https://doi.org/10.1038/s41398-022-02024-7
Article PubMed PubMed Central Google Scholar
Telias M., Segal M. 2022. Editorial: Pathological hyperactivity and hyperexcitability in the central nervous system. Front. Mol. Neurosci. 15, 955542. https://doi.org/10.3389/fnmol.2022.955542
Article PubMed PubMed Central Google Scholar
Raimondo J.V., Burman R.J., Katz A.A., Akerman C.J. 2015. Ion dynamics during seizures. Front. Cell. Neurosci. 9, 419. https://doi.org/10.3389/fncel.2015.00419
Article PubMed PubMed Central Google Scholar
Antonio L.L., Anderson M.L., Angamo E.A., Gabriel S., Klaft Z.-J., Liotta A., Salar S., Sandow N., Heinemann U. 2016. In vitro seizure like events and changes in ionic concentration. J. Neurosci. Methods. 260, 33–44. https://doi.org/10.1016/j.jneumeth.2015.08.014
Rasmussen R., O’Donnell J., Ding F., Nedergaard M. 2020. Interstitial ions: A key regulator of state-dependent neural activity? Prog. Neurobiol. 193, 101802. https://doi.org/10.1016/j.pneurobio.2020.101802
Article PubMed PubMed Central Google Scholar
de Curtis M., Uva L., Gnatkovsky V., Librizzi L. 2018. Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res. 143, 50–59. https://doi.org/10.1016/j.eplepsyres.2018.04.005
Fertziger A.P., Ranck J.B. 1970. Potassium accumulation in interstitial space during epileptiform seizures. Exp. Neurol. 26, 571–585. https://doi.org/10.1016/0014-4886(70)90150-0
Zuckermann E.C., Glaser G.H. 1968. Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp. Neurol. 20, 87–110. https://doi.org/10.1016/0014-4886(68)90126-x
Traynelis S.F., Dingledine R. 1988. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276. https://doi.org/10.1152/jn.1988.59.1.259
Somjen G.G., Müller M. 2000. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 885, 102–110. https://doi.org/10.1016/s0006-8993(00)02948-6
Wang L., Dufour S., Valiante T.A., Carlen P.L. 2016. Extracellular potassium and seizures: Excitation, inhibition and the role of Ih. Int. J. Neural. Syst. 26, 1650044. https://doi.org/10.1142/S0129065716500441
Liotta A., Caliskan G., ul Haq R., Hollnagel J.O., Rösler A., Heinemann U., Behrens C.J. 2011. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices. J. Neurophysiol. 105, 172–187. https://doi.org/10.1152/jn.00186.2010
Hablitz J.J., Johnston D. 1981. Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell. Mol. Neurobiol. 1, 325–334. https://doi.org/10.1007/BF00716267
Pan E., Stringer J.L. 1997. Role of potassium and calcium in the generation of cellular bursts in the dentate gyrus. J. Neurophysiol. 77, 2293–2299. https://doi.org/10.1152/jn.1997.77.5.2293
Jensen M.S., Yaari Y. 1997. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol. 77, 1224–1233. https://doi.org/10.1152/jn.1997.77.3.1224
Lee-Liu D., Gonzalez-Billault C. 2021. Neuron-intrinsic origin of hyperexcitability during early pathogenesis of Alzheimer’s disease: An editorial highlight for ‘Hippocampal hyperactivity in a rat model of Alzheimer’s disease’ on https://doi.org/10.1111/jnc.15323.J. Neurochem. 158, 586–588. https://doi.org/10.1111/jnc.15248
Sanabria E.R., Su H., Yaari Y. 2001. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J. Physiol. 532, 205–216. https://doi.org/10.1111/j.1469-7793.2001.0205g.x
Article PubMed PubMed Central Google Scholar
Hofer K.T., Kandrács Á., Tóth K., Hajnal B., Bokodi V., Tóth E.Z., Erőss L., Entz L., Bagó A.G., Fabó D., Ulbert I., Wittner L. 2022. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci. Rep. 12, 6280. https://doi.org/10.1038/s41598-022-10319-4
Article PubMed PubMed Central Google Scholar
David Y., Cacheaux L.P., Ivens S., Lapilover E., Heinemann U., Kaufer D., Friedman A. 2009. Astrocytic dysfunction in epileptogenesis: Consequence of altered potassium and glutamate homeostasis? J. Neurosci. 29, 10588–10599. https://doi.org/10.1523/JNEUROSCI.2323-09.2009
Article PubMed PubMed Central Google Scholar
de Curtis M., Librizzi L., Uva L. 2006. In vitro isolated guinea pig brain. In: Models of seizures and epilepsy. Academic Press Inc., p. 103–109.
Fröhlich F., Bazhenov M., Iragui-Madoz V., Sejnowski T.J. 2008. Potassium dynamics in the epileptic cortex: New insights on an old topic. Neuroscientist. 14, 422–433. https://doi.org/10.1177/1073858408317955
Article PubMed PubMed Central Google Scholar
González O.C., Shiri Z., Krishnan G.P., Myers T.L., Williams S., Avoli M., Bazhenov M. 2018. Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced epileptiform synchronization. Neurobiol. Dis. 109, 137–147. https://doi.org/10.1016/j.nbd.2017.10.011
Gentiletti D., de Curtis M., Gnatkovsky V., Suffczynski P. 2022. Focal seizures are organized by feedback between neural activity and ion concentration changes. Elife. 11, e68541. https://doi.org/10.7554/eLife.68541
Article PubMed PubMed Central Google Scholar
Nenov M.N., Tempia F., Denner L., Dineley K.T., Laezza F. 2015. Impaired firing properties of dentate granule neurons in an Alzheimer’s disease animal model are rescued by PPARγ agonism. J. Neurophysiol. 113 (6), 1712–26.https://doi.org/10.1152/jn.00419.2014
Tamagnini F., Scullion S., Brown J.T., Randall A.D. 2015. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide. Hippocampus. 25 (7), 786–97.https://doi.org/10.1002/hipo.22403
Article PubMed PubMed Central Google Scholar
Harden S.W. pyABF: A pure-Python ABF file reader. URL: https://pypi.org/project/pyabf/ [date accessed: 05.05.2024]
Bikson M., Hahn P.J., Fox J.E., Jefferys J. 2003. Depolarization block of neurons during maintenance of electrographic seizures. J. Neurophysiol. 90 (4), 2402–2408. https://doi.org/10.1152/jn.00467.2003
Averin A.S., Konakov M.V., Pimenov O.Y., Galimova M.H., Berezhnov A.V., Nenov M.N., Dynnik V.V. 2022. Regulation of papillary muscle contractility by NAD and ammonia interplay: Contribution of ion channels and exchangers. Membranes (Basel). 12 (12), 1239. https://doi.org/10.3390/membranes12121239
Yamashita T., Horio Y., Yamada M., Takahashi N., Kondo C., Kurachi Y. 1996. Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J. Physiol. 493 (Pt 1), 143–156. https://doi.org/10.1113/jphysiol.1996.sp021370
Article PubMed PubMed Central Google Scholar
Ishihara K., Ehara T. 1998. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J. Physiol. 510 (Pt 3), 755–771. https://doi.org/10.1111/j.1469-7793.1998.755bj.x
Comments (0)