Comparison of Spontaneous and Evoked Activity of CA1 Pyramidal Cells and Dentate Gyrus Granule Cells of the Hippocampus at an Increased Extracellular Potassium Concentration

Shao J., Liu Y., Gao D., Tu J., Yang F. 2021. Neural burst firing and its roles in mental and neurological disorders. Front. Cell. Neurosci. 15, 741292. https://doi.org/10.3389/fncel.2021.741292

Article  PubMed  PubMed Central  Google Scholar 

Targa Dias Anastacio H., Matosin N., Ooi L. 2022. Neuronal hyperexcitability in Alzheimer’s disease: What are the drivers behind this aberrant phenotype? Transl. Psychiatry. 12, 257. https://doi.org/10.1038/s41398-022-02024-7

Article  PubMed  PubMed Central  Google Scholar 

Telias M., Segal M. 2022. Editorial: Pathological hyperactivity and hyperexcitability in the central nervous system. Front. Mol. Neurosci. 15, 955542. https://doi.org/10.3389/fnmol.2022.955542

Article  PubMed  PubMed Central  Google Scholar 

Raimondo J.V., Burman R.J., Katz A.A., Akerman C.J. 2015. Ion dynamics during seizures. Front. Cell. Neurosci. 9, 419. https://doi.org/10.3389/fncel.2015.00419

Article  PubMed  PubMed Central  Google Scholar 

Antonio L.L., Anderson M.L., Angamo E.A., Gabriel S., Klaft Z.-J., Liotta A., Salar S., Sandow N., Heinemann U. 2016. In vitro seizure like events and changes in ionic concentration. J. Neurosci. Methods. 260, 33–44. https://doi.org/10.1016/j.jneumeth.2015.08.014

Article  PubMed  Google Scholar 

Rasmussen R., O’Donnell J., Ding F., Nedergaard M. 2020. Interstitial ions: A key regulator of state-dependent neural activity? Prog. Neurobiol. 193, 101802. https://doi.org/10.1016/j.pneurobio.2020.101802

Article  PubMed  PubMed Central  Google Scholar 

de Curtis M., Uva L., Gnatkovsky V., Librizzi L. 2018. Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res. 143, 50–59. https://doi.org/10.1016/j.eplepsyres.2018.04.005

Article  PubMed  Google Scholar 

Fertziger A.P., Ranck J.B. 1970. Potassium accumulation in interstitial space during epileptiform seizures. Exp. Neurol. 26, 571–585. https://doi.org/10.1016/0014-4886(70)90150-0

Article  PubMed  Google Scholar 

Zuckermann E.C., Glaser G.H. 1968. Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp. Neurol. 20, 87–110. https://doi.org/10.1016/0014-4886(68)90126-x

Article  PubMed  Google Scholar 

Traynelis S.F., Dingledine R. 1988. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276. https://doi.org/10.1152/jn.1988.59.1.259

Article  PubMed  Google Scholar 

Somjen G.G., Müller M. 2000. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 885, 102–110. https://doi.org/10.1016/s0006-8993(00)02948-6

Article  PubMed  Google Scholar 

Wang L., Dufour S., Valiante T.A., Carlen P.L. 2016. Extracellular potassium and seizures: Excitation, inhibition and the role of Ih. Int. J. Neural. Syst. 26, 1650044. https://doi.org/10.1142/S0129065716500441

Article  PubMed  Google Scholar 

Liotta A., Caliskan G., ul Haq R., Hollnagel J.O., Rösler A., Heinemann U., Behrens C.J. 2011. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices. J. Neurophysiol. 105, 172–187. https://doi.org/10.1152/jn.00186.2010

Article  PubMed  Google Scholar 

Hablitz J.J., Johnston D. 1981. Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell. Mol. Neurobiol. 1, 325–334. https://doi.org/10.1007/BF00716267

Article  PubMed  Google Scholar 

Pan E., Stringer J.L. 1997. Role of potassium and calcium in the generation of cellular bursts in the dentate gyrus. J. Neurophysiol. 77, 2293–2299. https://doi.org/10.1152/jn.1997.77.5.2293

Article  PubMed  Google Scholar 

Jensen M.S., Yaari Y. 1997. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol. 77, 1224–1233. https://doi.org/10.1152/jn.1997.77.3.1224

Article  PubMed  Google Scholar 

Lee-Liu D., Gonzalez-Billault C. 2021. Neuron-intrinsic origin of hyperexcitability during early pathogenesis of Alzheimer’s disease: An editorial highlight for ‘Hippocampal hyperactivity in a rat model of Alzheimer’s disease’ on https://doi.org/10.1111/jnc.15323.J. Neurochem. 158, 586–588. https://doi.org/10.1111/jnc.15248

Sanabria E.R., Su H., Yaari Y. 2001. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J. Physiol. 532, 205–216. https://doi.org/10.1111/j.1469-7793.2001.0205g.x

Article  PubMed  PubMed Central  Google Scholar 

Hofer K.T., Kandrács Á., Tóth K., Hajnal B., Bokodi V., Tóth E.Z., Erőss L., Entz L., Bagó A.G., Fabó D., Ulbert I., Wittner L. 2022. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci. Rep. 12, 6280. https://doi.org/10.1038/s41598-022-10319-4

Article  PubMed  PubMed Central  Google Scholar 

David Y., Cacheaux L.P., Ivens S., Lapilover E., Heinemann U., Kaufer D., Friedman A. 2009. Astrocytic dysfunction in epileptogenesis: Consequence of altered potassium and glutamate homeostasis? J. Neurosci. 29, 10588–10599. https://doi.org/10.1523/JNEUROSCI.2323-09.2009

Article  PubMed  PubMed Central  Google Scholar 

de Curtis M., Librizzi L., Uva L. 2006. In vitro isolated guinea pig brain. In: Models of seizures and epilepsy. Academic Press Inc., p. 103–109.

Google Scholar 

Fröhlich F., Bazhenov M., Iragui-Madoz V., Sejnowski T.J. 2008. Potassium dynamics in the epileptic cortex: New insights on an old topic. Neuroscientist. 14, 422–433. https://doi.org/10.1177/1073858408317955

Article  PubMed  PubMed Central  Google Scholar 

González O.C., Shiri Z., Krishnan G.P., Myers T.L., Williams S., Avoli M., Bazhenov M. 2018. Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced epileptiform synchronization. Neurobiol. Dis. 109, 137–147. https://doi.org/10.1016/j.nbd.2017.10.011

Article  PubMed  Google Scholar 

Gentiletti D., de Curtis M., Gnatkovsky V., Suffczynski P. 2022. Focal seizures are organized by feedback between neural activity and ion concentration changes. Elife. 11, e68541. https://doi.org/10.7554/eLife.68541

Article  PubMed  PubMed Central  Google Scholar 

Nenov M.N., Tempia F., Denner L., Dineley K.T., Laezza F. 2015. Impaired firing properties of dentate granule neurons in an Alzheimer’s disease animal model are rescued by PPARγ agonism. J. Neurophysiol. 113 (6), 1712–26.https://doi.org/10.1152/jn.00419.2014

Article  PubMed  Google Scholar 

Tamagnini F., Scullion S., Brown J.T., Randall A.D. 2015. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide. Hippocampus. 25 (7), 786–97.https://doi.org/10.1002/hipo.22403

Article  PubMed  PubMed Central  Google Scholar 

Harden S.W. pyABF: A pure-Python ABF file reader. URL: https://pypi.org/project/pyabf/ [date accessed: 05.05.2024]

Bikson M., Hahn P.J., Fox J.E., Jefferys J. 2003. Depolarization block of neurons during maintenance of electrographic seizures. J. Neurophysiol. 90 (4), 2402–2408. https://doi.org/10.1152/jn.00467.2003

Article  PubMed  Google Scholar 

Averin A.S., Konakov M.V., Pimenov O.Y., Galimova M.H., Berezhnov A.V., Nenov M.N., Dynnik V.V. 2022. Regulation of papillary muscle contractility by NAD and ammonia interplay: Contribution of ion channels and exchangers. Membranes (Basel). 12 (12), 1239. https://doi.org/10.3390/membranes12121239

Article  PubMed  Google Scholar 

Yamashita T., Horio Y., Yamada M., Takahashi N., Kondo C., Kurachi Y. 1996. Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J. Physiol. 493 (Pt 1), 143–156. https://doi.org/10.1113/jphysiol.1996.sp021370

Article  PubMed  PubMed Central  Google Scholar 

Ishihara K., Ehara T. 1998. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J. Physiol. 510 (Pt 3), 755–771. https://doi.org/10.1111/j.1469-7793.1998.755bj.x

Article  PubMed  PubMed Central 

Comments (0)

No login
gif