Akhtar A., Singh S., Kaushik R., Awasthi R., Behl T. 2024. Types of memory, dementia, Alzheimer’s disease, and their various pathological cascades as targets for potential pharmacological drugs. Ageing Res. Rev. 96, 102289.
Article CAS PubMed Google Scholar
Gholami A. 2023. Alzheimer’s disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci. Lett. 817, 137532.
Article CAS PubMed Google Scholar
Singh M. K., Shin Y., Ju S., Han S., Kim S.S., Kang I. 2024. Comprehensive overview of Alzheimer’s disease: Etiological insights and degradation strategies. Int. J. Mol. Sci. 25, 6901.
Article CAS PubMed PubMed Central Google Scholar
Tyagi K., Rai P., Gautam A., Kaur H., Kapoor S., Suttee A., Jaiswal P. K., Sharma A., Singh G., Barnwal R.P. 2023. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. Eur. J. Med. Res. 28, 307.
Article CAS PubMed PubMed Central Google Scholar
Swain S.P., Mahanta C.S., Maurya M., Mandal D., Parihar V., Ravichandiran V. 2024. Exploring SK/S1P/S1PR pathway as a target for antiviral drug development. Health Sciences Rev. 11, 100177.
Fan C., Wu Y., Rui X., Yang Y., Ling C., Liu S., Liu S., Wang Y. 2022. Animal models for COVID-19: Advances, gaps and perspectives. Signal Transduct. Target. Ther. 7, 220.
Article CAS PubMed PubMed Central Google Scholar
Belotserkovskaya Y.G., Romanovskikh A.G., Smirnov I.P., Sinopalnikov, A.I. 2021. Long COVID-19. Consilium Medicum. 23, 261–268.
Hu C., Chen C., Dong X.P. 2021. Impact of COVID-19 pandemic on patients with neurodegenerative diseases. Front. Aging Neurosci. 13, 664965.
Article CAS PubMed PubMed Central Google Scholar
Pulliam L., Sun B., McCafferty E., Soper S.A., Witek M.A., Hu M., Ford J.M., Song S., Kapogiannis D., Glesby M.J., Merenstein D., Tien P.C., Freasier H., French A., McKay H., Diaz M.M., Ofotokun I., Lake J.E., Margolick J.B., Kim E.-Y., Levine S.R., Fischl M.A., Li W., Martinson J., Tang N. 2024. Microfluidic isolation of neuronal-enriched extracellular vesicles shows distinct and common neurological proteins in long COVID, HIV infection and Alzheimer’s disease. Int. J. Mol. Sci. 25, 3830.
Article CAS PubMed PubMed Central Google Scholar
Rudnicka-Drożak E., Drożak P., Mizerski G., Zaborowski T., Ślusarska B., Nowicki G., Drożak M. 2023. Links between COVID-19 and Alzheimer’s disease – What do we already know? Int. J. Environ. Res. Public Health. 20, 2146.
Article PubMed PubMed Central Google Scholar
Griggs E., Trageser K., Naughton S., Yang E.J., Mathew B., Van Hyfte G., Hellmers L., Jette N., Estill M., Shen L., Fischer T., Pasinetti G.M. 2023. Recapitulation of pathophysiological features of AD in SARS-CoV-2-infected subjects. Elife. 12, e86333.
Article CAS PubMed PubMed Central Google Scholar
Xia X., Wang Y., Zheng J. 2021. COVID-19 and Alzheimer’s disease: How one crisis worsens the other. Transl. Neurodegener. 10, 15.
Article CAS PubMed PubMed Central Google Scholar
Gkouskou K., Vasilogiannakopoulou T., Andreakos E., Davanos N., Gazouli M., Sanoudou D., Eliopoulos A. G. 2021. COVID-19 enters the expanding network of apolipoprotein E4-related pathologies. Redox Biol. 41, 101938.
Article CAS PubMed PubMed Central Google Scholar
Kotsev S.V., Miteva., Krayselska S., Shopova M., Pishmisheva-Peleva M., Stanilova S.A., Velikova T. 2021. Hypotheses and facts for genetic factors related to severe COVID-19. World J. Virol. 10, 137.
Article PubMed PubMed Central Google Scholar
Naughton S.X., Raval U., Pasinetti G.M. 2020. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. J. Alzheimers Dis. 76, 21–25.
Article CAS PubMed PubMed Central Google Scholar
Bobkova N.V. 2021. The balance between two branches of RAS can protect us from severe COVID-19 course. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 15, 36–51.
Alenina N., Bader M. 2019. ACE2 in brain physiology and pathophysiology: Evidence from transgenic animal models. Neurochem. Res. 44, 1323–1329.
Article CAS PubMed Google Scholar
Mahajan S., Sen D., Sunil A., Srikanth P., Marathe S.D., Shaw K., Sahare M., Galande S., Abraham N.M. 2023. Knockout of angiotensin converting enzyme-2 receptor leads to morphological aberrations in rodent olfactory centers and dysfunctions associated with sense of smell. Front. Neurosci. 17, 1180868.
Article PubMed PubMed Central Google Scholar
Panariello F., Cellini L., Speciani M., De Ronchi D., Atti A. R. 2020. How does SARS-CoV-2 affect the central nervous system? A working hypothesis. Front. Psychiatry. 11, 582345.
Article PubMed PubMed Central Google Scholar
Saikarthik J., Saraswathi I., Al-Atram A. A. 2022. Does COVID-19 affect adult neurogenesis? A neurochemical perspective. In: Recent advances in neurochemistry. Heinbockel T., Weissert R., Eds. UK: Intechopen, p. 134.
Gross L.Z., Sacerdoti M., Piiper A., Zeuzem S., Leroux A. E., Biondi R.M. 2020. ACE2, the receptor that enables infection by SARS-CoV-2: Biochemistry, structure, allostery and evaluation of the potential development of ACE2 modulators. Chem. Med. Chem. 15, 1682–1690.
Article CAS PubMed Google Scholar
Reveret L., Leclerc M., Emond V., Tremblay C., Loiselle A., Bourassa P., Bennett D.A., Hébert S.S., Calon F. 2023. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer’s disease. Acta Neuropathol. Commun. 11, 159.
Article PubMed PubMed Central Google Scholar
Komatsu T., Suzuki Y., Imai J., Sugano S., Hida M., Tanigami A., Muroi S., Yamada Y., Hanaoka K. 2002. Molecularcloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2). DNA Sequence. 13, 217–220.
Article CAS PubMed Google Scholar
Staroverov V., Galatenko A., Knyazev E., Tonevitsky A. 2024. Mathematical model explains differences in Omicron and Delta SARS-CoV-2 dynamics in Caco-2 and Calu-3 cells. Peer J. 12, e16964.
Article PubMed PubMed Central Google Scholar
Ye M., Wysocki J., Gonzales-Pacheco F.R., Salem M., Evora K., Garcia-Halpin L., Poglitsch M., Schuster M., Batlle D. 2012. Murine recombinant ACE2: Effect on angiotensin II dependent hypertension and distinctive ACE2 inhibitor characteristics on rodent and human ACE2. Hypertension. 60, 730.
Article CAS PubMed Google Scholar
Clever S., Volz A. 2023. Mouse models in COVID-19 research: Analyzing the adaptive immune response. Med. Microbiol. Immunol. 212, 165–183.
Article CAS PubMed Google Scholar
Bobkova N.V., Poltavtseva R.A., Samokhin A.N., Sukhikh G.T. 2013. Therapeutic effect of mesenchymal multipotent stromal cells on the memory of animals with neurodegeneration of the Alzheimer type. Kletochnye tekhnologii v biologii i meditsine (Rus.). 3, 123–126.
Bobkova N.V., Lyabin D.N., Medvinskaya N.I., Samokhin A.N., Nekrasov P.V., Nesterova I.V., Aleksandrova I.Y., Tatarnikova O.G., Bobylev A.G., Vikhlyantsev I.M., Kukharsky M.S., Ustyugov A.A., Polyakov D.N., Eliseeva I.A., Kretov D.A., Guryanov S G., Ovchinnikov L.P. 2015. The Y-box binding protein 1 suppresses Alzheimer’s disease progression in two animal models. PLoS One. 10, e0138867.
Article CAS PubMed PubMed Central Google Scholar
Chaplygina A.V., Zhdanova D.Y., Kovalev V.I., Poltavtseva R.A., Medvinskaya N.I., Bobkova N.V. 2022. Cell therapy as a way to correct impaired neurogenesis in the adult brain in a model of Alzheimer’s disease. J. Evol. Biochem. Physiol. 58, 117–137.
Zhdanova D.Yu., Poltavtseva R.A., Svirschevskaya E.V., Bobkova N.V. 2020. Effect of intranasal administration of exosomes of multipotent mesenchymal stromal cells on memory in mice in the model of Alzheimer’s disease. Kletochnye tekhnologii v biologii i meditsine (Rus.). 4, 289–296.
Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Vassar R. 2006. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. Eur. J. Neurosci. 26, 10129–10140.
Comments (0)