Rapid Transfer of Photo-Released Protons from Water to Lipid Membrane

Cherepanov D.A., Feniouk B.A., Junge W., Mulkidjanian A.Y. 2003. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophys. J. 85 (2), 1307–1316. https://doi.org/10.1016/S0006-3495(03)74565-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Georgievskii Yu., Medvedev E.S., Stuchebrukhov A.A. 2002. Proton transport via the membrane surface. Biophys. J. 82, 2833–2846. https://doi.org/10.1016/S0006-3495(02)75626-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116 (13), 7642–7672. https://doi.org/10.1021/acs.chemrev.5b00736

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA. 109 (25), 9744–9749. https://doi.org/10.1073/pnas.1121227109

Article  PubMed  PubMed Central  Google Scholar 

Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P., et al. 2017. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 74553. https://doi.org/10.1038/s41598-017-04675-9

Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (2 Pt 1), 1031–1037. https://doi.org/10.1016/S0006-3495(03)74919-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA. 108 (35), 14461–14466. https://doi.org/10.1073/pnas.1107476108

Article  PubMed  PubMed Central  Google Scholar 

Cherepanov D.A., Junge W., Mulkidjanian A.Y. 2004. Proton transfer dynamics at the membrane/water interface: Dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86 (2), 665–680. https://doi.org/10.1016/S0006-3495(04)74146-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamashita T., Voth G.A. 2010. Properties of hydrated excess protons near phospholipid bilayers. J. Phys. Chem. B. 114 (1), 592–603. https://doi.org/10.1021/jp908768c

Article  CAS  PubMed  Google Scholar 

Nguyen T.H., Zhang C., Weichselbaum E., Knyazev D.G., Pohl P., Carloni P. 2018. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion. PLoS One. 13 (2), e0193454. https://doi.org/10.1371/journal.pone.0193454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim. Biophys. Acta. 905 (2), 390–398. https://doi.org/10.1016/0005-2736(87)90468-8

Article  CAS  PubMed  Google Scholar 

Fibich A., Janko K., Apell H.J. 2007. Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state. Biophys. J. 93 (9), 3092–3104. https://doi.org/10.1529/biophysj.107.110791

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. Engl. 44 (8), 1195–1198. https://doi.org/10.1002/anie.200461567

Article  CAS  PubMed  Google Scholar 

Vishnyakova V.E., Tashkin V.Yu., Terentjev A.O., Apell H.-J., Sokolov V.S. 2018. Binding of potassium ions inside the access channel at the cytoplasmic side of Na+,K+-ATPase. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 12 (4), 344–351, https://doi.org/10.1134/S1990747818050082

Article  Google Scholar 

Tashkin V.Yu., Vishnyakova V.E., Shcherbakov A.A., Finogenova O.A., Ermakov Yu.A., Sokolov V.S. 2019. Changes of the capacitance and boundary potential of a bilayer lipid membrane associated with a fast release of protons on its surface. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 13 (2), 155–160, https://doi.org/10.1134/S1990747819020077

Article  Google Scholar 

Sokolov V.S., Tashkin V.Yu., Zykova D.D., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic potentials caused by the release of protons from photoactivated compound Sodium 2-methoxy-5-nitrophenyl sulfate at the surface of bilayer lipid membrane. Membranes. 13, 722. https://doi.org/10.3390/membranes13080722

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535. https://doi.org/10.1021/j100796a529

Article  CAS  Google Scholar 

MacDonald R.C., Bangham A.D. 1972. Comparison of double layer potentials in lipid monolayers and lipid bilayers membranes. J. Membr. Biol. 7, 29–53. https://doi.org/10.1007/BF01867908

Article  CAS  PubMed  Google Scholar 

Ermakov Yu.A., Sokolov V.S. 2003. Planar lipid bilayers (BLMs) and their applications. Tien H.T., Ottova-Leitmannova A., Eds. Amsterdam, Boston, London, New York, Oxford, Paris, Dan Diego, San Francisco, Singapore, Sidney, Tokio: Elsevier, p. 109–141.

Google Scholar 

Sokolov V.S., Mirsky V.M. 2004. Electrostatic potentials of bilayer lipid membranes: Basic principles and analytical applications. In: Ultrathin electrochemical chemo- and biosensors: Technology and performance. Mirsky V.M., ed. Heidelberg: Springer-Verlag, p. 255–291.https://doi.org/10.1007/978-3-662-05204-4

Book  Google Scholar 

Cherny V.V., Sokolov V.S., Abidor I.G. 1980. Determination of surface charge of bilayer lipid membranes. Bioelectrochem. Bioenergetics. 7, 413–420. https://doi.org/10.1016/0302-4598(80)80002-X

Article  Google Scholar 

Denieva Z.G., Sokolov V.S., Batishchev O.V. 2024. HIV-1 gag polyprotein affinity to the lipid membrane is independent of its surface charge. Biomolecules. 14, 1086. https://doi.org/10.3390/biom14091086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bangham A.D. 1968. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 18, 29–95. https://doi.org/10.1016/0079-6107(68)90019-9

Article  CAS  PubMed  Google Scholar 

Ermakov Yu.A., Averbakh A.Z., Arbuzova A.B., Sukharev S.I. 1998. Lipid and cell membranes in the presence of gadolinium and other ions with high affinity to lipids. 2. A dipole component of the boundary potential on membranes with different surface charges. Membranes and Cell Biology. 12 (3), 411–426.

Google Scholar 

Mitkova D., Marukovich N., Ermakov Yu.A., Vitkova V. 2014. Bending rigidity of phosphatidylserine-containing lipid bilayers in acidic aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 460, 71–78. https://doi.org/10.1016/j.colsurfa.2013.12.059

Article  CAS  Google Scholar 

Comments (0)

No login
gif