Cherepanov D.A., Feniouk B.A., Junge W., Mulkidjanian A.Y. 2003. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophys. J. 85 (2), 1307–1316. https://doi.org/10.1016/S0006-3495(03)74565-2
Article CAS PubMed PubMed Central Google Scholar
Georgievskii Yu., Medvedev E.S., Stuchebrukhov A.A. 2002. Proton transport via the membrane surface. Biophys. J. 82, 2833–2846. https://doi.org/10.1016/S0006-3495(02)75626-9
Article CAS PubMed PubMed Central Google Scholar
Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116 (13), 7642–7672. https://doi.org/10.1021/acs.chemrev.5b00736
Article CAS PubMed PubMed Central Google Scholar
Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA. 109 (25), 9744–9749. https://doi.org/10.1073/pnas.1121227109
Article PubMed PubMed Central Google Scholar
Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P., et al. 2017. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 74553. https://doi.org/10.1038/s41598-017-04675-9
Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (2 Pt 1), 1031–1037. https://doi.org/10.1016/S0006-3495(03)74919-4
Article CAS PubMed PubMed Central Google Scholar
Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA. 108 (35), 14461–14466. https://doi.org/10.1073/pnas.1107476108
Article PubMed PubMed Central Google Scholar
Cherepanov D.A., Junge W., Mulkidjanian A.Y. 2004. Proton transfer dynamics at the membrane/water interface: Dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86 (2), 665–680. https://doi.org/10.1016/S0006-3495(04)74146-6
Article CAS PubMed PubMed Central Google Scholar
Yamashita T., Voth G.A. 2010. Properties of hydrated excess protons near phospholipid bilayers. J. Phys. Chem. B. 114 (1), 592–603. https://doi.org/10.1021/jp908768c
Article CAS PubMed Google Scholar
Nguyen T.H., Zhang C., Weichselbaum E., Knyazev D.G., Pohl P., Carloni P. 2018. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion. PLoS One. 13 (2), e0193454. https://doi.org/10.1371/journal.pone.0193454
Article CAS PubMed PubMed Central Google Scholar
Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim. Biophys. Acta. 905 (2), 390–398. https://doi.org/10.1016/0005-2736(87)90468-8
Article CAS PubMed Google Scholar
Fibich A., Janko K., Apell H.J. 2007. Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state. Biophys. J. 93 (9), 3092–3104. https://doi.org/10.1529/biophysj.107.110791
Article CAS PubMed PubMed Central Google Scholar
Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. Engl. 44 (8), 1195–1198. https://doi.org/10.1002/anie.200461567
Article CAS PubMed Google Scholar
Vishnyakova V.E., Tashkin V.Yu., Terentjev A.O., Apell H.-J., Sokolov V.S. 2018. Binding of potassium ions inside the access channel at the cytoplasmic side of Na+,K+-ATPase. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 12 (4), 344–351, https://doi.org/10.1134/S1990747818050082
Tashkin V.Yu., Vishnyakova V.E., Shcherbakov A.A., Finogenova O.A., Ermakov Yu.A., Sokolov V.S. 2019. Changes of the capacitance and boundary potential of a bilayer lipid membrane associated with a fast release of protons on its surface. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 13 (2), 155–160, https://doi.org/10.1134/S1990747819020077
Sokolov V.S., Tashkin V.Yu., Zykova D.D., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic potentials caused by the release of protons from photoactivated compound Sodium 2-methoxy-5-nitrophenyl sulfate at the surface of bilayer lipid membrane. Membranes. 13, 722. https://doi.org/10.3390/membranes13080722
Article CAS PubMed PubMed Central Google Scholar
Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535. https://doi.org/10.1021/j100796a529
MacDonald R.C., Bangham A.D. 1972. Comparison of double layer potentials in lipid monolayers and lipid bilayers membranes. J. Membr. Biol. 7, 29–53. https://doi.org/10.1007/BF01867908
Article CAS PubMed Google Scholar
Ermakov Yu.A., Sokolov V.S. 2003. Planar lipid bilayers (BLMs) and their applications. Tien H.T., Ottova-Leitmannova A., Eds. Amsterdam, Boston, London, New York, Oxford, Paris, Dan Diego, San Francisco, Singapore, Sidney, Tokio: Elsevier, p. 109–141.
Sokolov V.S., Mirsky V.M. 2004. Electrostatic potentials of bilayer lipid membranes: Basic principles and analytical applications. In: Ultrathin electrochemical chemo- and biosensors: Technology and performance. Mirsky V.M., ed. Heidelberg: Springer-Verlag, p. 255–291.https://doi.org/10.1007/978-3-662-05204-4
Cherny V.V., Sokolov V.S., Abidor I.G. 1980. Determination of surface charge of bilayer lipid membranes. Bioelectrochem. Bioenergetics. 7, 413–420. https://doi.org/10.1016/0302-4598(80)80002-X
Denieva Z.G., Sokolov V.S., Batishchev O.V. 2024. HIV-1 gag polyprotein affinity to the lipid membrane is independent of its surface charge. Biomolecules. 14, 1086. https://doi.org/10.3390/biom14091086
Article CAS PubMed PubMed Central Google Scholar
Bangham A.D. 1968. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 18, 29–95. https://doi.org/10.1016/0079-6107(68)90019-9
Article CAS PubMed Google Scholar
Ermakov Yu.A., Averbakh A.Z., Arbuzova A.B., Sukharev S.I. 1998. Lipid and cell membranes in the presence of gadolinium and other ions with high affinity to lipids. 2. A dipole component of the boundary potential on membranes with different surface charges. Membranes and Cell Biology. 12 (3), 411–426.
Mitkova D., Marukovich N., Ermakov Yu.A., Vitkova V. 2014. Bending rigidity of phosphatidylserine-containing lipid bilayers in acidic aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 460, 71–78. https://doi.org/10.1016/j.colsurfa.2013.12.059
Comments (0)