Tashkin V.Yu., Vishnyakova V.E., Shcherbakov A.A., Finogenova O.A., Ermakov Yu.A., Sokolov V.S. 2019. Changes of the capacitance and boundary potential of a bilayer lipid membrane associated with a fast release of protons on its surface. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 13 (2):155–160. https://doi.org/10.1134/S1990747819020077
Sokolov V.S., Tashkin V.Yu., Zykova D.F., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic potentials caused by the release of protons from photoactivated compound sodium 2-methoxy-5-nitrophenyl sulfate at the surface of bilayer lipid membrane. Membranes. 13, 722. https://doi.org/10.3390/membranes13080722
Article PubMed PubMed Central Google Scholar
Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. Engl. 44(8), 1195–1198. https://doi.org/10.1002/anie.200461567
Abbruzzetti S., Sottini S., Viappiani C., Corrie J.E. 2006. Acid-induced unfolding of myoglobin triggered by a laser pH jump method. Photochem. Photobiol. Sci. 5 (6), 621–628. https://doi.org/10.1039/b516533d
Fibich A., Apell H.J. 2011. Kinetics of luminal proton binding to the SR Ca-ATPase. Biophys. J. 101(8), 1896–1904. https://doi.org/10.1016/j.bpj.2011.09.014
Article PubMed PubMed Central Google Scholar
Tashkin V.Yu., Shcherbakov A.A., Apell H.-J., Sokolov V.S. 2013. The competition transport of sodium ions and protons at the cytoplasmic side of Na,K-ATPase. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 7 (2):113–121. https://doi.org/10.1134/S1990747813020074
Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (2 Pt 1), 1031–1037. https://doi.org/10.1016/S0006-3495(03)74919-4
Article PubMed PubMed Central Google Scholar
Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA. 108 (35), 14 461–14 466. https://doi.org/10.1073/pnas.1107476108
Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P., Pohl P. 2017. Origin of proton affinity to membrane/water interfaces. Sci.Rep. 7, 4553. https://doi.org/10.1038/s41598-017-04675-9
Article PubMed PubMed Central Google Scholar
Weichselbaum E., Galimzyanov T., Batishchev O.V., Akimov S.A., Pohl P. 2023. Proton migration on top of charged membranes. Biomolecules. 13 (2), 352. https://doi.org/10.3390/biom13020352
Article PubMed PubMed Central Google Scholar
Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA. 109 (25), 9744–9749. https://doi.org/10.1073/pnas.1121227109
Article PubMed PubMed Central Google Scholar
Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N.A. 1994. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 370 (6488), 379–382. https://doi.org/10.1038/370379a0
Malkov D.Y., Sokolov V.S. 1996. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochem. Biophys. Acta. 1278, 197–204. https://doi.org/10.1016/0005-2736(95)00197-2
Gross D., Loew L.M. 1989. Fluorescent indicators of membrane potential: microspectrofluorometry and imaging. Methods Cell Biol. 30, 193–218. https://doi.org/10.1016/S0091-679X(08)60980-2
Clarke R.J., Kane D.J. 1997. Optical detection of membrane dipole potential: Avoidance of fluidity and dye-induced effects. Biochim. Biophys. Acta. 1323 (2), 223–239. https://doi.org/10.1016/s0005-2736(96)00188-5
Sokolov V.S., Gavrilchik A.N., Kulagina A.O., Meshkov I.N., Pohl P., Gorbunova Y.G. 2016. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. J. Photochem. Photobiol. B. 161, 162–169. https://doi.org/10.1016/j.jphotobiol.2016.05.016
Konstantinova A.N., Kharitonova Yu.V., Tashkin V.Yu., Sokolov V.S. 2021. Styryl dyes di-4-ANEPPS and RH‑421 as sensors of the protons on the surface of lipid membranes. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 15 (2):142–146. https://doi.org/10.1134/S1990747821020070
Gutman M. 1986. Application of the laser-induced proton pulse for measuring the protonation rate constants of specific sites on proteins and membranes. Methods Enzymol. 127, 522–538. https://doi.org/10.1016/0076-6879(86)27042-1
Gutman M. 1984. The pH jump: Probing of macromolecules and solutions by a laser-induced, ultrashort proton pulse—theory and applications in biochemistry. Methods Biochem. Anal. 30, 1–103. https://doi.org/10.1002/9780470110515.ch1
Nandi R., Amdursky N.A. 2022. The dual use of the pyranine (HPTS) fluorescent probe: A ground-state pH indicator and an excited-state proton transfer probe. Acc. Chem. Res. 55, 2728–2739. https://doi.org/10.1021/acs.accounts.2c00458
Article PubMed PubMed Central Google Scholar
Gutman M., Nachliel E., Gershon E., Giniger R. 1983. Kinetic analysis of the protonation of a surface group of a macromolecule. Eur. J. Biochem. 134 (1), 63–69. https://doi.org/10.1111/j.1432-1033.1983.tb07531.x
Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535.
Ermakov Yu.A., Sokolov V.S. 2003. Planar lipid bilayers (BLMs) and their applications. Ed. Tien H.T., Ottova-Leitmannova A. Amsterdam, etc: Elsevier, p. 109–141.
Sokolov V.S., Mirsky V.M. 2004. Ultrathin electrochemical chemo- and biosensors: Technology and performance. Ed. Mirsky V.M. Heidelberg: Springer–Verlag, p. 255–291.
McLaughlin S. 1977. Electrostatic potentials at membrane-solution interfaces. In: Bronner F., Kleinzeller A., Eds. Current topics in membranes and transport. Academic Press, New York, San Francisco, London. V. 9, p. 71–144. https://doi.org/10.1016/S0070-2161(08)60677-2
Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim. Biophys. Acta. 905 (2), 390–398.
Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116 (13), 7642–7672. https://doi.org/10.1021/acs.chemrev.5b00736
Article PubMed PubMed Central Google Scholar
Knyazev D.G., Silverstein T.P., Brescia S., Maznichenko A., Pohl P. 2023. A new theory about interfacial proton diffusion revisited: The commonly accepted laws of electrostatics and diffusion prevail. Biomolecules. 13 (11), 1641. https://doi.org/10.3390/biom13111641
Comments (0)