Electrostatic Potentials during Adsorption and Photochemical Reactions of Pyranine on Bilayer Lipid Membranes

Tashkin V.Yu., Vishnyakova V.E., Shcherbakov A.A., Finogenova O.A., Ermakov Yu.A., Sokolov V.S. 2019. Changes of the capacitance and boundary potential of a bilayer lipid membrane associated with a fast release of protons on its surface. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 13 (2):155–160. https://doi.org/10.1134/S1990747819020077

Article  Google Scholar 

Sokolov V.S., Tashkin V.Yu., Zykova D.F., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic potentials caused by the release of protons from photoactivated compound sodium 2-methoxy-5-nitrophenyl sulfate at the surface of bilayer lipid membrane. Membranes. 13, 722. https://doi.org/10.3390/membranes13080722

Article  PubMed  PubMed Central  Google Scholar 

Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. Engl. 44(8), 1195–1198. https://doi.org/10.1002/anie.200461567

Article  PubMed  Google Scholar 

Abbruzzetti S., Sottini S., Viappiani C., Corrie J.E. 2006. Acid-induced unfolding of myoglobin triggered by a laser pH jump method. Photochem. Photobiol. Sci. 5 (6), 621–628. https://doi.org/10.1039/b516533d

Article  PubMed  Google Scholar 

Fibich A., Apell H.J. 2011. Kinetics of luminal proton binding to the SR Ca-ATPase. Biophys. J. 101(8), 1896–1904. https://doi.org/10.1016/j.bpj.2011.09.014

Article  PubMed  PubMed Central  Google Scholar 

Tashkin V.Yu., Shcherbakov A.A., Apell H.-J., Sokolov V.S. 2013. The competition transport of sodium ions and protons at the cytoplasmic side of Na,K-ATPase. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 7 (2):113–121. https://doi.org/10.1134/S1990747813020074

Article  Google Scholar 

Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (2 Pt 1), 1031–1037. https://doi.org/10.1016/S0006-3495(03)74919-4

Article  PubMed  PubMed Central  Google Scholar 

Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA. 108 (35), 14 461–14 466. https://doi.org/10.1073/pnas.1107476108

Article  Google Scholar 

Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P., Pohl P. 2017. Origin of proton affinity to membrane/water interfaces. Sci.Rep. 7, 4553. https://doi.org/10.1038/s41598-017-04675-9

Article  PubMed  PubMed Central  Google Scholar 

Weichselbaum E., Galimzyanov T., Batishchev O.V., Akimov S.A., Pohl P. 2023. Proton migration on top of charged membranes. Biomolecules. 13 (2), 352. https://doi.org/10.3390/biom13020352

Article  PubMed  PubMed Central  Google Scholar 

Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA. 109 (25), 9744–9749. https://doi.org/10.1073/pnas.1121227109

Article  PubMed  PubMed Central  Google Scholar 

Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N.A. 1994. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 370 (6488), 379–382. https://doi.org/10.1038/370379a0

Article  PubMed  Google Scholar 

Malkov D.Y., Sokolov V.S. 1996. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochem. Biophys. Acta. 1278, 197–204. https://doi.org/10.1016/0005-2736(95)00197-2

Article  PubMed  Google Scholar 

Gross D., Loew L.M. 1989. Fluorescent indicators of membrane potential: microspectrofluorometry and imaging. Methods Cell Biol. 30, 193–218. https://doi.org/10.1016/S0091-679X(08)60980-2

Article  PubMed  Google Scholar 

Clarke R.J., Kane D.J. 1997. Optical detection of membrane dipole potential: Avoidance of fluidity and dye-induced effects. Biochim. Biophys. Acta. 1323 (2), 223–239. https://doi.org/10.1016/s0005-2736(96)00188-5

Article  PubMed  Google Scholar 

Sokolov V.S., Gavrilchik A.N., Kulagina A.O., Meshkov I.N., Pohl P., Gorbunova Y.G. 2016. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. J. Photochem. Photobiol. B. 161, 162–169. https://doi.org/10.1016/j.jphotobiol.2016.05.016

Article  PubMed  Google Scholar 

Konstantinova A.N., Kharitonova Yu.V., Tashkin V.Yu., Sokolov V.S. 2021. Styryl dyes di-4-ANEPPS and RH‑421 as sensors of the protons on the surface of lipid membranes. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 15 (2):142–146. https://doi.org/10.1134/S1990747821020070

Article  Google Scholar 

Gutman M. 1986. Application of the laser-induced proton pulse for measuring the protonation rate constants of specific sites on proteins and membranes. Methods Enzymol. 127, 522–538. https://doi.org/10.1016/0076-6879(86)27042-1

Article  PubMed  Google Scholar 

Gutman M. 1984. The pH jump: Probing of macromolecules and solutions by a laser-induced, ultrashort proton pulse—theory and applications in biochemistry. Methods Biochem. Anal. 30, 1–103. https://doi.org/10.1002/9780470110515.ch1

Article  PubMed  Google Scholar 

Nandi R., Amdursky N.A. 2022. The dual use of the pyranine (HPTS) fluorescent probe: A ground-state pH indicator and an excited-state proton transfer probe. Acc. Chem. Res. 55, 2728–2739. https://doi.org/10.1021/acs.accounts.2c00458

Article  PubMed  PubMed Central  Google Scholar 

Gutman M., Nachliel E., Gershon E., Giniger R. 1983. Kinetic analysis of the protonation of a surface group of a macromolecule. Eur. J. Biochem. 134 (1), 63–69. https://doi.org/10.1111/j.1432-1033.1983.tb07531.x

Article  PubMed  Google Scholar 

Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535.

Article  Google Scholar 

Ermakov Yu.A., Sokolov V.S. 2003. Planar lipid bilayers (BLMs) and their applications. Ed. Tien H.T., Ottova-Leitmannova A. Amsterdam, etc: Elsevier, p. 109–141.

Sokolov V.S., Mirsky V.M. 2004. Ultrathin electrochemical chemo- and biosensors: Technology and performance. Ed. Mirsky V.M. Heidelberg: Springer–Verlag, p. 255–291.

Google Scholar 

McLaughlin S. 1977. Electrostatic potentials at membrane-solution interfaces. In: Bronner F., Kleinzeller A., Eds. Current topics in membranes and transport. Academic Press, New York, San Francisco, London. V. 9, p. 71–144. https://doi.org/10.1016/S0070-2161(08)60677-2

Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim. Biophys. Acta. 905 (2), 390–398.

Article  PubMed  Google Scholar 

Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116 (13), 7642–7672. https://doi.org/10.1021/acs.chemrev.5b00736

Article  PubMed  PubMed Central  Google Scholar 

Knyazev D.G., Silverstein T.P., Brescia S., Maznichenko A., Pohl P. 2023. A new theory about interfacial proton diffusion revisited: The commonly accepted laws of electrostatics and diffusion prevail. Biomolecules. 13 (11), 1641. https://doi.org/10.3390/biom13111641

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif