Chatzinikolaou P.N., Margaritelis N.V., Paschalis V., Theodorou A.A., Vrabas I.S., Kyparos A., D’Alessandro A., Nikolaidis M.G. 2024. Erythrocyte metabolism. Acta Physiol. 240 (3), e14081. https://doi.org/10.1111/apha.14081
Domonkos J. 1961. The metabolism of the tonic and tetanic muscles I. Glycolytic metabolism. Arch. Biochem. Biophys. 95 (1), 138–143. https://doi.org/10.1016/0003-9861(61)90118-7
Bass A., Brdiczka D., Eyer P., Hofer S., Pette D. 1969. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10 (2), 198–206.https://doi.org/10.1111/j.1432-1033.1969.tb00674.x
Burleigh I.G., Schimke R.T. 1969. The activities of some enzymes concerned with energy metabolism in mammalian muscles of differing pigmentation. Biochem. J. 113 (1), 157–166. https://doi.org/10.1042/bj1130157
Article PubMed PubMed Central Google Scholar
Greenhaff P.L., Nevill M.E., Soderlund K., Bodin K., Boobis L.H., Williams C., Hultman E. 1994. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. 478 (1), 149–155. https://doi.org/10.1113/jphysiol.1994.sp020238
Article PubMed PubMed Central Google Scholar
Vander Heiden M.G., Cantley L.C., Thompson C.B. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324 (5930), 1029–1033. https://doi.org/10.1126/science.1160809
Article PubMed PubMed Central Google Scholar
Zhou D., Duan Z., Li Z., Ge F., Wei R., Kong L. 2022. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front. Pharmacol. 13. 1091779. https://doi.org/10.3389/fphar.2022.1091779
Article PubMed PubMed Central Google Scholar
Rigoulet M., Bouchez C.L., Paumard P., Ransac S., Cuvellier S., Duvezin-Caubet S., Mazat J.P., Devin A. 2020. Cell energy metabolism: An update. Biochim. Biophys. Acta – Bioenergetics. 1861 (11), 148276. https://doi.org/10.1016/j.bbabio.2020.148276
Soto-Heredero G., Gómez de las Heras M.M., Gabandé-Rodríguez E., Oller J., Mittelbrunn M. 2020. Glycolysis – a key player in the inflammatory response. FEBS J. 287 (16), 3350–3369. https://doi.org/10.1111/febs.15327
Article PubMed PubMed Central Google Scholar
Fuller G.G., Kim J.K. 2021. Compartmentalization and metabolic regulation of glycolysis. J. Cell Sci. 134 (20), jcs258469. https://doi.org/10.1242/jcs.258469
Article PubMed PubMed Central Google Scholar
Gustavsson A.-K., van Niekerk D.D., Adiels C.B., Goksör M., Snoep J.L. 2014. Heterogeneity of glycolytic oscillatory behaviour in individual yeast cells. FEBS Lett. 588 (1), 3–7. https://doi.org/10.1016/j.febslet.2013.11.028
Newsholm E., Start K. 1977. Regulation of metabolism. M.: Mir.
Rodwell V.W., Bender D., Botham K.M., Kennelly P.J., Weil P.A. 2018. Harper’s Illustrated Biochemistry, 31st ed. McGraw Hill/Medical, p. 412–428.
Ren J.M., Hultman E. 1989. Regulation of glycogenolysis in human skeletal muscle. J. Appl. Physiol. 67 (6), 2243–2248. https://doi.org/10.1152/jappl.1989.67.6.2243
Chasiotis D., Sahlin K., Hultman E. 1982. Regulation of glycogenolysis in human muscle at rest and during exercise. J. Appl. Physiol. 53 (3), 708–15. https://doi.org/10.1152/jappl.1982.53.3.708
Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. 1999. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol.-Endocrin. Metab. 277 (5), E890–900. https://doi.org/10.1152/ajpendo.1999.277.5.E890
Ren J.M., Hultman E. 1990. Regulation of phosphorylase a activity in human skeletal muscle. J. Appl. Physiol. 69 (3), 919–923. https://doi.org/10.1152/jappl.1990.69.3.919
Spriet L.L., Howlett R.A., Heigenhauser G.J.F. 2000. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 32 (4), 756–763. https://doi.org/10.1097/00005768-200004000-00007
Sahlin K., Gorski J., Edstrom L. 1990. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am. J. Physiol.-Cell Physiol. 259 (3), C409–C412. https://doi.org/10.1152/ajpcell.1990.259.3.C409
Chasiotis D., Sahlin K., Hultman E. 1983. Regulation of glycogenolysis in human muscle in response to epinephrine infusion. J. Appl. Physiol. 54 (1), 45–50. https://doi.org/10.1152/jappl.1983.54.1.45
Katz A., Westerblad H. 2014. Regulation of glycogen breakdown and its consequences for skeletal muscle function after training. Mamm. Gen. 25 (9–10), 464–72. https://doi.org/10.1007/s00335-014-9519-x
Katz A. 2022. A century of exercise physiology: Key concepts in regulation of glycogen metabolism in skeletal muscle. Eur. J. Appl. Physiol. 122 (8), 1751–1772. https://doi.org/10.1007/s00421-022-04935-1
Article PubMed PubMed Central Google Scholar
Martinov M.V., Plotnikov A.G., Vitvitsky V.M., Ataullakhanov F.I. 2000. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim. Biophys. Acta – General Subjects. 1474 (1), 75–87. https://doi.org/10.1016/S0304-4165(99)00218-4
Korendyaseva T.K., Kuvatov D.N., Volkov V.A., Martinov M.V, Vitvitsky V.M., Banerjee R., Ataullakhanov F.I. 2008. An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism. PLoS Comput. Biol. 4 (5), e1000076. https://doi.org/10.1371/journal.pcbi.1000076
Article PubMed PubMed Central Google Scholar
Zaitsev A.V., Martinov M.V., Vitvitsky V.M., Ataullakhanov F.I. 2019. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci. Rep. 9 (1), 7657. https://doi.org/10.1038/s41598-019-44009-5
Article PubMed PubMed Central Google Scholar
Ataullakhanov F.I., Martinov M.V., Shi Q., Vitvitsky V.M. 2022. Significance of two transmembrane ion gradients for human erythrocyte volume stabilization. PLoS One. 17 (12), e0272675. https://doi.org/10.1371/journal.pone.0272675
Article PubMed PubMed Central Google Scholar
Protasov E., Martinov M., Sinauridze E., Vitvitsky V., Ataullakhanov F. 2023. Prediction of oscillations in glycolysis in ethanol-consuming erythrocyte-bioreactors. Int. J. Mol. Sci. 24 (12), 10124. https://doi.org/10.3390/ijms241210124
Article PubMed PubMed Central Google Scholar
Lambeth M.J., Kushmerick M.J. 2002. A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 30 (6), 808–827. https://doi.org/10.1114/1.1492813
Li Y., Dash R.K., Kim J., Saidel G.M., Cabrera M.E. 2009. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: In silico studies. Am. J. Physiol.-Cell Physiol. 296 (1), C25–C46. https://doi.org/10.1152/ajpcell.00094.2008
Schmitz J.P.J., Van Riel N.A.W., Nicolay K., Hilbers P.A.J., Jeneson J.A.L. 2010. Silencing of glycolysis in muscle: Experimental observation and numerical analysis. Exp. Physiol. 95 (2), 380–397. https://doi.org/10.1113/expphysiol.2009.049841
Karl I.E., Voyles N., Recant L. 1968. Effects of plasma albumin on glycolytic intermediates in rat diaphragm muscle. Diabetes. 17 (6), 374–384. https://doi.org/10.2337/diab.17.6.374
Harris R.C., Hultman E., Nordesjö L.O. 1974. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand. J. Clin. Lab. Invest. 33 (2), 109–120.
Beatty C.H., Young M.K., Bocek R.M. 1976. Control of glycolysis in skeletal muscle from fetal rhesus monkeys. Pediatr. Res. 10 (3), 149–153. https://doi.org/10.1203/00006450-197603000-00001
Comments (0)