Simulation of the Glycolytic Metabolite Concentration Profile in Mammalian Resting Skeletal Muscles

Chatzinikolaou P.N., Margaritelis N.V., Paschalis V., Theodorou A.A., Vrabas I.S., Kyparos A., D’Alessandro A., Nikolaidis M.G. 2024. Erythrocyte metabolism. Acta Physiol. 240 (3), e14081. https://doi.org/10.1111/apha.14081

Article  Google Scholar 

Domonkos J. 1961. The metabolism of the tonic and tetanic muscles I. Glycolytic metabolism. Arch. Biochem. Biophys. 95 (1), 138–143. https://doi.org/10.1016/0003-9861(61)90118-7

Article  PubMed  Google Scholar 

Bass A., Brdiczka D., Eyer P., Hofer S., Pette D. 1969. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10 (2), 198–206.https://doi.org/10.1111/j.1432-1033.1969.tb00674.x

Article  PubMed  Google Scholar 

Burleigh I.G., Schimke R.T. 1969. The activities of some enzymes concerned with energy metabolism in mammalian muscles of differing pigmentation. Biochem. J. 113 (1), 157–166. https://doi.org/10.1042/bj1130157

Article  PubMed  PubMed Central  Google Scholar 

Greenhaff P.L., Nevill M.E., Soderlund K., Bodin K., Boobis L.H., Williams C., Hultman E. 1994. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. 478 (1), 149–155. https://doi.org/10.1113/jphysiol.1994.sp020238

Article  PubMed  PubMed Central  Google Scholar 

Vander Heiden M.G., Cantley L.C., Thompson C.B. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324 (5930), 1029–1033. https://doi.org/10.1126/science.1160809

Article  PubMed  PubMed Central  Google Scholar 

Zhou D., Duan Z., Li Z., Ge F., Wei R., Kong L. 2022. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front. Pharmacol. 13. 1091779. https://doi.org/10.3389/fphar.2022.1091779

Article  PubMed  PubMed Central  Google Scholar 

Rigoulet M., Bouchez C.L., Paumard P., Ransac S., Cuvellier S., Duvezin-Caubet S., Mazat J.P., Devin A. 2020. Cell energy metabolism: An update. Biochim. Biophys. Acta – Bioenergetics. 1861 (11), 148276. https://doi.org/10.1016/j.bbabio.2020.148276

Soto-Heredero G., Gómez de las Heras M.M., Gabandé-Rodríguez E., Oller J., Mittelbrunn M. 2020. Glycolysis – a key player in the inflammatory response. FEBS J. 287 (16), 3350–3369. https://doi.org/10.1111/febs.15327

Article  PubMed  PubMed Central  Google Scholar 

Fuller G.G., Kim J.K. 2021. Compartmentalization and metabolic regulation of glycolysis. J. Cell Sci. 134 (20), jcs258469. https://doi.org/10.1242/jcs.258469

Article  PubMed  PubMed Central  Google Scholar 

Gustavsson A.-K., van Niekerk D.D., Adiels C.B., Goksör M., Snoep J.L. 2014. Heterogeneity of glycolytic oscillatory behaviour in individual yeast cells. FEBS Lett. 588 (1), 3–7. https://doi.org/10.1016/j.febslet.2013.11.028

Article  PubMed  Google Scholar 

Newsholm E., Start K. 1977. Regulation of metabolism. M.: Mir.

Rodwell V.W., Bender D., Botham K.M., Kennelly P.J., Weil P.A. 2018. Harper’s Illustrated Biochemistry, 31st ed. McGraw Hill/Medical, p. 412–428.

Ren J.M., Hultman E. 1989. Regulation of glycogenolysis in human skeletal muscle. J. Appl. Physiol. 67 (6), 2243–2248. https://doi.org/10.1152/jappl.1989.67.6.2243

Article  PubMed  Google Scholar 

Chasiotis D., Sahlin K., Hultman E. 1982. Regulation of glycogenolysis in human muscle at rest and during exercise. J. Appl. Physiol. 53 (3), 708–15. https://doi.org/10.1152/jappl.1982.53.3.708

Article  PubMed  Google Scholar 

Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. 1999. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol.-Endocrin. Metab. 277 (5), E890–900. https://doi.org/10.1152/ajpendo.1999.277.5.E890

Article  Google Scholar 

Ren J.M., Hultman E. 1990. Regulation of phosphorylase a activity in human skeletal muscle. J. Appl. Physiol. 69 (3), 919–923. https://doi.org/10.1152/jappl.1990.69.3.919

Article  PubMed  Google Scholar 

Spriet L.L., Howlett R.A., Heigenhauser G.J.F. 2000. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 32 (4), 756–763. https://doi.org/10.1097/00005768-200004000-00007

Article  PubMed  Google Scholar 

Sahlin K., Gorski J., Edstrom L. 1990. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am. J. Physiol.-Cell Physiol. 259 (3), C409–C412. https://doi.org/10.1152/ajpcell.1990.259.3.C409

Article  Google Scholar 

Chasiotis D., Sahlin K., Hultman E. 1983. Regulation of glycogenolysis in human muscle in response to epinephrine infusion. J. Appl. Physiol. 54 (1), 45–50. https://doi.org/10.1152/jappl.1983.54.1.45

Article  PubMed  Google Scholar 

Katz A., Westerblad H. 2014. Regulation of glycogen breakdown and its consequences for skeletal muscle function after training. Mamm. Gen. 25 (9–10), 464–72. https://doi.org/10.1007/s00335-014-9519-x

Article  Google Scholar 

Katz A. 2022. A century of exercise physiology: Key concepts in regulation of glycogen metabolism in skeletal muscle. Eur. J. Appl. Physiol. 122 (8), 1751–1772. https://doi.org/10.1007/s00421-022-04935-1

Article  PubMed  PubMed Central  Google Scholar 

Martinov M.V., Plotnikov A.G., Vitvitsky V.M., Ataullakhanov F.I. 2000. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim. Biophys. Acta – General Subjects. 1474 (1), 75–87. https://doi.org/10.1016/S0304-4165(99)00218-4

Article  Google Scholar 

Korendyaseva T.K., Kuvatov D.N., Volkov V.A., Martinov M.V, Vitvitsky V.M., Banerjee R., Ataullakhanov F.I. 2008. An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism. PLoS Comput. Biol. 4 (5), e1000076. https://doi.org/10.1371/journal.pcbi.1000076

Article  PubMed  PubMed Central  Google Scholar 

Zaitsev A.V., Martinov M.V., Vitvitsky V.M., Ataullakhanov F.I. 2019. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci. Rep. 9 (1), 7657. https://doi.org/10.1038/s41598-019-44009-5

Article  PubMed  PubMed Central  Google Scholar 

Ataullakhanov F.I., Martinov M.V., Shi Q., Vitvitsky V.M. 2022. Significance of two transmembrane ion gradients for human erythrocyte volume stabilization. PLoS One. 17 (12), e0272675. https://doi.org/10.1371/journal.pone.0272675

Article  PubMed  PubMed Central  Google Scholar 

Protasov E., Martinov M., Sinauridze E., Vitvitsky V., Ataullakhanov F. 2023. Prediction of oscillations in glycolysis in ethanol-consuming erythrocyte-bioreactors. Int. J. Mol. Sci. 24 (12), 10124. https://doi.org/10.3390/ijms241210124

Article  PubMed  PubMed Central  Google Scholar 

Lambeth M.J., Kushmerick M.J. 2002. A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 30 (6), 808–827. https://doi.org/10.1114/1.1492813

Article  PubMed  Google Scholar 

Li Y., Dash R.K., Kim J., Saidel G.M., Cabrera M.E. 2009. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: In silico studies. Am. J. Physiol.-Cell Physiol. 296 (1), C25–C46. https://doi.org/10.1152/ajpcell.00094.2008

Article  PubMed  Google Scholar 

Schmitz J.P.J., Van Riel N.A.W., Nicolay K., Hilbers P.A.J., Jeneson J.A.L. 2010. Silencing of glycolysis in muscle: Experimental observation and numerical analysis. Exp. Physiol. 95 (2), 380–397. https://doi.org/10.1113/expphysiol.2009.049841

Article  PubMed  Google Scholar 

Karl I.E., Voyles N., Recant L. 1968. Effects of plasma albumin on glycolytic intermediates in rat diaphragm muscle. Diabetes. 17 (6), 374–384. https://doi.org/10.2337/diab.17.6.374

Article  PubMed  Google Scholar 

Harris R.C., Hultman E., Nordesjö L.O. 1974. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand. J. Clin. Lab. Invest. 33 (2), 109–120.

Article  PubMed  Google Scholar 

Beatty C.H., Young M.K., Bocek R.M. 1976. Control of glycolysis in skeletal muscle from fetal rhesus monkeys. Pediatr. Res. 10 (3), 149–153. https://doi.org/10.1203/00006450-197603000-00001

Article  PubMed  Google Scholar 

Comments (0)

No login
gif