Bevers E.M., Tilly R.H., Senden J.M., Comfurius P., Zwaal R.F. 1989. Exposure of endogenous phosphatidylserine at the outer surface of stimulated platelets is reversed by restoration of aminophospholipid translocase activity. Biochemistry. 28 (6), 2382–2387. https://doi.org/10.1021/bi00432a007
Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. 2008. Formation of coated platelets is regulated by the dense granule secretion of adenosine 5'diphosphate acting via the P2Y12 receptor, J. Thromb. Haemost. 6 (9), 1603–1605. https://doi.org/10.1111/j.1538-7836.2008.03052.x
Podoplelova N.A., Nechipurenko D.Y., Ignatova A.A., Sveshnikova, A.N., Panteleev M.A. 2021. Procoagulant platelets: Mechanisms of generation and action. Hämostaseologie. 41 (2), 146–153. https://doi.org/10.1055/a-1401-2706
Dale G.L. 2005. Coated platelets: An emerging component of the procoagulant response. J. Thromb. Haemost. 3 (10), 2185–2192. https://doi.org/10.1111/j.1538-7836.2005.01274.x
Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V., Ataullakhanov F.I. 2007. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97 (3), 425–434.
Yakimenko A.O., Verholomova F.Y., Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. 2012. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys. J. 102 (10), 2261–2269. https://doi.org/10.1016/j.bpj.2012.04.004
Article PubMed PubMed Central Google Scholar
Nechipurenko D.Y., Receveur N., Yakimenko A.O., Shepelyuk T.O., Yakusheva A.A., Kerimov R.R., Obydennyy S.I., Eckly A., Léon C., Gachet C., Grishchuk E.L., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2019. Clot contraction drives the translocation of procoagulant platelets to thrombus surface. Arterioscler. Thromb. Vasc. Biol. 39 (1), 37–47. https://doi.org/10.1161/ATVBAHA.118.311390
Gaffet P., Bettache N., Bienvenüe A. 1995. Phosphatidylserine exposure on the platelet plasma membrane during A23187-induced activation is independent of cytoskeleton reorganization. Eur. J. Cell Biol. 67 (4), 336–345.
Verhallen P.F., Bevers E.M., Comfurius P., Zwaal R.F. 1987. Correlation between calpain-mediated cytoskeletal degradation and expression of platelet procoagulant activity. A role for the platelet membrane-skeleton in the regulation of membrane lipid asymmetry? Biochim. Biophys. Acta. 903 (1), 206–217. https://doi.org/10.1016/0005-2736(87)90170-2
Artemenko E.O., Yakimenko A.O., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. 2016. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. Biochem. J. 473 (4), 435–448. https://doi.org/10.1042/BJ20150779
Dale G.L., Friese P., Batar P., Hamilton S.F., Reed G.L., Jackson K.W., Clemetson K.J., Alberio L. 2002. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature. 415 (6868), 175–179. https://doi.org/10.1038/415175a
Pasquet J.M., Dachary-Prigent J., Nurden A.T. 1998. Microvesicle release is associated with extensive protein tyrosine dephosphorylation in platelets stimulated by A23187 or a mixture of thrombin and collagen. Biochem. J. 333 (Pt 3), 591–599. 333https://doi.org/10.1042/bj3330591
Rochat S., Alberio L. 2015. Formaldehyde-fixation of platelets for flow cytometric measurement of phosphatidylserine exposure is feasible. Cytometry A. 87 (1), 32–36. https://doi.org/10.1002/cyto.a.22567
Jamur M.C., Oliver C. 2010. Permeabilization of cell membranes. Methods Mol. Biol. 588, 63–66. https://doi.org/10.1007/978-1-59745-324-0_9
Comments (0)