Targeting both death and paracaspase domains of MALT1 with antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors

Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

Article  CAS  PubMed  Google Scholar 

Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

Article  CAS  PubMed  Google Scholar 

Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 23, 238–257 (2023).

Article  CAS  PubMed  Google Scholar 

Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005.e2916 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Argyle, D. & Kitamura, T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front. Immunol. 9, 2629 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ruland, J., Duncan, G. S., Wakeham, A. & Mak, T. W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749–758 (2003).

Article  CAS  PubMed  Google Scholar 

Rebeaud, F. et al. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat. Immunol. 9, 272–281 (2008).

Article  CAS  PubMed  Google Scholar 

Gehring, T. et al. MALT1 phosphorylation controls activation of T lymphocytes and survival of ABC-DLBCL tumor cells. Cell Rep. 29, 873–888.e810 (2019).

Article  CAS  PubMed  Google Scholar 

Blonska, M. & Lin, X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res 21, 55–70 (2011).

Article  CAS  PubMed  Google Scholar 

Sun, L., Deng, L., Ea, C.-K., Xia, Z.-P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

Article  CAS  PubMed  Google Scholar 

Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9, 263–271 (2008).

Article  CAS  PubMed  Google Scholar 

Hailfinger, S. et al. Malt1-dependent RelB cleavage promotes canonical NF-κB activation in lymphocytes and lymphoma cell lines. Proc. Natl Acad. Sci. USA 108, 14596–14601 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staal, J. et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30, 1742–1752 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079–1089 (2014).

Article  CAS  PubMed  Google Scholar 

Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 153, 1036–1049 (2013).

Article  CAS  PubMed  Google Scholar 

Xia, X. et al. Glutaminolysis mediated by MALT1 protease activity facilitates PD-L1 expression on ABC-DLBCLcells and contributes to their immune evasion. Front. Oncol. 8, 632 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Di Pilato, M. et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570, 112–116 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Cheng, L., Deng, N., Yang, N., Zhao, X. & Lin, X. Malt1 protease is critical in maintaining function of regulatory T cells and may be a therapeutic target for antitumor immunity. J Immunol 202, 3008–3019 (2019).

Article  CAS  PubMed  Google Scholar 

Fontan, L. et al. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 22, 812–824 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagel, D. et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 22, 825–837 (2012).

Article  CAS  PubMed  Google Scholar 

Di Pilato, M. et al. Translational studies using the MALT1 inhibitor (S)-mepazine to induce Treg fragility and potentiate immune checkpoint therapy in cancer. J. Immunother. Precis. Oncol. 6, 61–73 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uren, A. G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Molecular Cell 6, 961–967 (2000).

CAS  PubMed  Google Scholar 

Lucas, P. C. et al. Bcl10 and MALT1, independent targets of chromosomal translocation in MALT lymphoma, cooperate in a novel NF-κB signaling pathway. J. Biol. Chem. 276, 19012–19019 (2001).

Article  CAS  PubMed  Google Scholar 

Vogel, K. U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).

Article  CAS  PubMed  Google Scholar 

Han, Y., Liu, D. & Li, L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 10, 727–742 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Gide, T. N. et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/Anti-CTLA-4 combined therapy. Cancer Cell 35, 238–255.e236 (2019).

Article  CAS  PubMed  Google Scholar 

Kim, S. T. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 24, 1449–1458 (2018).

Article  CAS  PubMed  Google Scholar 

Quancard, J. et al. Optimization of the in vivo potency of pyrazolopyrimidine MALT1 protease inhibitors by reducing metabolism and increasing potency in whole blood. J. Med. Chem. 63, 14594–14608 (2020).

Article  CAS  PubMed 

Comments (0)

No login
gif