Resistance exercise training in older men reduces ATF4-activated and senescence-associated mRNAs in skeletal muscle

Goodpaster BH, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci United States. 2006;61(10):1059–64.

Google Scholar 

Cruz-Jentoft AJ, et al. Sarcopenia: revised European consensus on definition and diagnosis, . Age Ageing. 2019;48(1):16–31.

Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyère O. "Health outcomes of sarcopenia: a systematic review and meta-analysis, . PLoS ONE. 2017;12(1):e0169548. https://doi.org/10.1371/journal.pone.0169548.

Cruz-Jentoft AJ, Sayer AA. "Sarcopenia" In Lancet, vol. 393, no. 10191). England: © 2019; Elsevier Ltd, 2019. pp. 2636–2646.

Lechan RM, et al. "Immunoreactive interleukin-1 beta localization in the rat forebrain,. Brain Res. 1990;514(1):135–40. https://doi.org/10.1016/0006-8993(90)90445-h.

Article  CAS  PubMed  Google Scholar 

Mende E, et al. Progressive machine-based resistance training for prevention and treatment of sarcopenia in the oldest old: A systematic review and meta-analysis,. Exp Gerontol. 2022;63:111767. https://doi.org/10.1016/j.exger.2022.111767.

Article  Google Scholar 

Deane CS, et al. Transcriptomic meta-analysis of disuse muscle atrophy vs resistance exercise-induced hypertrophy in young and older humans,. J Cachexia Sarcopenia Muscle. 2021;12(3):629–45.

Article  PubMed  PubMed Central  Google Scholar 

Raue U, et al. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol (1985). 2012;112(10):1625–36. https://doi.org/10.1152/japplphysiol.00435.2011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol (1985). 2007;102(6):2232–9. https://doi.org/10.1152/japplphysiol.00024.2007.

Article  CAS  PubMed  Google Scholar 

Churchward-Venne TA, et al. There are no nonresponders to resistance-type exercise training in older men and women. J Am Med Dir Assoc. 2015;16(5):400–11. https://doi.org/10.1016/j.jamda.2015.01.071.

Article  PubMed  Google Scholar 

Moro T, et al. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training. J Nutr. 2018;148(6):900–9.

Article  PubMed  PubMed Central  Google Scholar 

Reidy PT, et al. Protein supplementation has minimal effects on muscle adaptations during resistance exercise training in young men: a double-blind randomized clinical trial. J Nutr. 2016;146(9):1660–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fry CS, et al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592(12):2625–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen Y, Vechetti IJ Jr, Valentino TR, McCarthy JJ. "High-yield skeletal muscle protein recovery from TRIzol after RNA and DNA extraction. Biotechniques. 2020;69(4):264–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9. https://doi.org/10.1006/abio.1987.9999.

Article  CAS  PubMed  Google Scholar 

Dobin A, et al. “STAR: ultrafast universal RNA-seq aligner,”. Bioinformatics. 2013;29(1):15–21.

Article  CAS  PubMed  Google Scholar 

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, England. 2014;30(7):923–30.

Article  CAS  Google Scholar 

Love MI, Huber W, Anders S. “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2,”. Genome Biol. 2014;15(12):550.

Article  PubMed  PubMed Central  Google Scholar 

Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu T, et al. “clusterProfiler 40: A universal enrichment tool for interpreting omics data,”. Innovation (Camb). 2021;2(3):100141.

CAS  PubMed  Google Scholar 

Subramanian A, et al. “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,”. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans WJ, Campbell WW. “Sarcopenia and age-related changes in body composition and functional capacity,”. J Nutr. 1993;123(2 Suppl):465–8. https://doi.org/10.1093/jn/123.suppl_2.465.

Article  CAS  PubMed  Google Scholar 

Morley JE, et al. “Sarcopenia with limited mobility: an international consensus,”. J Am Med Dir Assoc. 2011;12(6):403–9.

Article  PubMed  PubMed Central  Google Scholar 

Fry CS, Rasmussen BB. “Skeletal muscle protein balance and metabolism in the elderly,”. Curr Aging Sci. 2011;4(3):260–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strasser EM, et al. Strength training increases skeletal muscle quality but not muscle mass in old institutionalized adults: a randomized, multi-arm parallel and controlled intervention study. Eur J Phys Rehabil Med, Italy. 2018;54(6):921–33.

Google Scholar 

Seo MW, Jung SW, Kim SW, Lee JM, Jung HC, Song JK. Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with sarcopenia: a randomized controlled trial. Int J Environ Res Public Health. 2021;18:6762.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dos Santos EEP, de Araújo RC, Candow DG, Forbes SC, Guijo JA, de Almeida Santana CC, et al. Efficacy of creatine supplementation combined with resistance training on muscle strength and muscle mass in older females: a systematic review and meta-analysis. Nutrients. 2021;13:3757.

Article  PubMed  PubMed Central  Google Scholar 

Cho HJ, et al. "Lumican, an Exerkine, Protects against Skeletal Muscle Loss,", Int J Mol Sci, 2022 Sep 2;23(17). https://doi.org/10.3390/ijms231710031.

Vallet SD, Ricard-Blum S. “Lysyl oxidases: from enzyme activity to extracellular matrix cross-links,”. Essays Biochem. 2019;63(3):349–64. https://doi.org/10.1042/ebc20180050.

Article  CAS  PubMed  Google Scholar 

Jang DG, Kwon KY, Song EK, Park TJ. “Integrin β-like 1 protein (ITGBL1) promotes cell migration by preferentially inhibiting integrin-ECM binding at the trailing edge,”. Genes Genomics. 2022;44(4):405–13. https://doi.org/10.1007/s13258-021-01204-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song EK, et al, "ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis,". Sci Transl Med, 2018 Oct 10;10(462). https://doi.org/10.1126/scitranslmed.aam7486.

Stenina-Adognravi O, Plow EF. “Thrombospondin-4 in tissue remodeling,”. Matrix Biol. 2019;75–76:300–13. https://doi.org/10.1016/j.matbio.2017.11.006.

Article  CAS  PubMed  Google Scholar 

Snyman C, Niesler CU. “MMP-14 in skeletal muscle repair,”. J Muscle Res Cell Motil. 2015;36(3):215–25. https://doi.org/10.1007/s10974-015-9414-4.

Article  CAS  PubMed  Google Scholar 

Peck BD, et al. “A muscle cell-macrophage axis involving matrix metalloproteinase 14 facilitates extracellular matrix remodeling with mechanical loading,”. Faseb J. 2022;36(2):e22155. https://doi.org/10.1096/fj.202100182RR.

Article  CAS  PubMed 

Comments (0)

No login
gif