Attention-dependent coupling with forebrain and brainstem neuromodulatory nuclei differs across the lifespan

Shine J. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn Sci. 2019;23:572–83. https://doi.org/10.1016/j.tics.2019.04.002.

Article  PubMed  Google Scholar 

Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev. 2001;35:146–60. https://doi.org/10.1016/S0165-0173(01)00044-3.

Article  PubMed  CAS  Google Scholar 

Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58:P306-324. https://doi.org/10.1016/j.neuron.2008.04.017.

Article  CAS  Google Scholar 

Chun MM, Turk-Browne NB. Interactions between attention and memory. Curr Opin Neurobiol. 2007;17:177–84. https://doi.org/10.1016/j.conb.2007.03.005.

Article  PubMed  CAS  Google Scholar 

Coubard OA, Ferrufino L, Boura M, Gripon A, Renaud M, Bherer L. Attentional control in normal aging and Alzheimer’s disease. Neuropsychology. 2011;25:353–6. https://doi.org/10.1037/a0022058.

Article  PubMed  Google Scholar 

Cashdollar N, Fukuda K, Bocklage A, Aurtenetxe S, Vogel EK, Gazzaley A. Prolonged disengagement from attentional capture in normal aging. Pyschol Aging. 2013;28:77–86. https://doi.org/10.1037/a0029899.

Article  Google Scholar 

Bier B, Lecavalier NC, Malenfant D, Peretz I, Bellevile S. Effect of aging on attentional control in dual-tasking. Exp Aging Res. 2017;43:161–77. https://doi.org/10.1080/0361073X.2017.1276377.

Article  PubMed  Google Scholar 

Levitt P, Moore RY. Noradrenaline neuron innervation of the cortex in the rat. Brain Res. 1978;139:219–31. https://doi.org/10.1016/0006-8993(78)90925-3.

Article  PubMed  CAS  Google Scholar 

Mesulam MM, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol. 1983;214:170–97. https://doi.org/10.1002/cne.902140206.

Article  PubMed  CAS  Google Scholar 

Detari L, Semba K, Rasmusson DD. Responses of cortical EEG-related basal forebrain neurons to brainstem and sensory stimulation in urethane-anesthetized rats. Eur J Neurosci. 1997;9:1153–61.

Article  PubMed  CAS  Google Scholar 

Espana R, Berridge CW. Organization of noradrenergic efferents to arousal-related basal forebrain structures. J Comp Neurol. 2006;496:668–83. https://doi.org/10.1002/cne.20946.

Article  PubMed  Google Scholar 

Markello RD, Spreng NR, Luh W, Anderson AK, De Rosa E. Segregation of the human basal forebrain using resting state functional MRI. NeuroImage. 2018;173:287–97. https://doi.org/10.1016/j.neuroimage.2018.02.042.

Article  PubMed  Google Scholar 

Weinshenker D. Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res. 2008;5(3):342–5. https://doi.org/10.2174/156720508784533286.

Article  PubMed  CAS  Google Scholar 

Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003;60:337–41. https://doi.org/10.1001/archneur.60.3.337.

Article  PubMed  Google Scholar 

Liu AKL, Chang RC, Pearce RKB, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history, and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 2015;129:527–40. https://doi.org/10.1007/s00401-015-1392-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The locus coeruleus in aging and Alzheimer’s disease: a postmortem and brain imaging review. J Alzheimers Dis. 2021;83:5–22. https://doi.org/10.3233/JAD-210191.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dahl MJ, Mather M, Düzel S, Bodammer NC, Lindenberger U, Kühn S, Werkle-Bergner M. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav. 2019;3:1203–14.

Article  PubMed  PubMed Central  Google Scholar 

Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42:33–84. https://doi.org/10.1016/S0165-0173(03)00143-7.

Article  PubMed  Google Scholar 

Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28(1):403–50. https://doi.org/10.1146/annurev.neuro.28.061604.135709.

Article  PubMed  CAS  Google Scholar 

Henny P, Jones BE. Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci. 2008;27:654–70. https://doi.org/10.1111/j.1460-9568.2008.06029.x.

Article  PubMed  PubMed Central  Google Scholar 

Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex. 2015;25:118–37. https://doi.org/10.1093/cercor/bht210.

Article  PubMed  Google Scholar 

Maness EB, Burk JA, McKenna JT, Schiffino FL, Strecker RE, McGoy JG. Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Res Bull. 2022;188:47–58. https://doi.org/10.1016/j.brainresbull.2022.07.014.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hasselmo ME, Linster C, Patil M, Ma D, Cekic M. Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol. 1997;77:3326–39. https://doi.org/10.1152/jn.1997.77.6.3326.

Article  PubMed  CAS  Google Scholar 

Turker HB, Riley E, Luh W, Colcombe SJ, Swallow KM. Estimates of locus coeruleus function with functional magnetic resonance imaging are influenced by localization approaches and the use of multi-echo data. NeuroImage. 2021; 118047, https://doi.org/10.1016/j.neuroimage.2021.118047.

Lister JP, Barnes CA. Neurobiological changes in the hippocampus during normative aging. Arch Neurol. 2009;66:829–33. https://doi.org/10.1001/archneurol.2009.125.

Article  PubMed  Google Scholar 

Reyngoudt H, Claeys T, Vlerick L, Verleden S, Acou M, Deblaere K, De Deene Y, Audenaert K, Goethals I, Achten E. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a H-MRS study. Eur J Radiol. 2012;81:e223-231. https://doi.org/10.1016/j.ejrad.2011.01.106.

Article  PubMed  Google Scholar 

Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. 2017;79:66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030.

Article  PubMed  Google Scholar 

Cera N, Esposito R, Cieri F, Tartaro A. Altered cingulate cortex functional connectivity in normal aging and mild cognitive impairment. Front Neurosci. 2019; 13. https://doi.org/10.3389/fnins.2019.00857

Lee PL, Chou KH, Chung CP, et al. Posterior cingulate cortex network predicts Alzheimer’s disease progression. Front Aging Neurosci. 2020;12:608667. https://doi.org/10.3389/fnagi.2020.608667.

Article  PubMed  PubMed Central  Google Scholar 

Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. Neuron. 2005;46:681–92. https://doi.org/10.1016/j.neuron.2005.04.026.

Article  PubMed  CAS  Google Scholar 

Munn BR, Müller EJ, Wainstein G, Shine JM. The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Comm. 2021;12:6016. https://doi.org/10.1038/s41467-021-26268-x.

Article  CAS 

Comments (0)

No login
gif