Johnson AA, Shokhirev MN. Contextualizing aging clocks and properly describing biological age. Aging Cell. 2024:e14377. https://doi.org/10.1111/acel.14377.
Kojima G, Iliffe S, Walters K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing. 2018;47:193–200. https://doi.org/10.1093/ageing/afx162.
Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, Seron P, Ahmed SH, Rosengren A, Kelishadi R, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386:266–73. https://doi.org/10.1016/S0140-6736(14)62000-6.
Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1:e183605. https://doi.org/10.1001/jamanetworkopen.2018.3605.
Article PubMed PubMed Central Google Scholar
Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20:249. https://doi.org/10.1186/s13059-019-1824-y.
Article PubMed PubMed Central Google Scholar
Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E. Epigenetic predictor of age. PLoS One. 2011;6:e14821. https://doi.org/10.1371/journal.pone.0014821.
Article PubMed PubMed Central CAS Google Scholar
Fan H, Xie Q, Zhang Z, Wang J, Chen X, Qiu P. Chronological age prediction: developmental evaluation of DNA methylation-based machine learning models. Front Bioeng Biotechnol. 2021;9:819991. https://doi.org/10.3389/fbioe.2021.819991.
Galkin F, Mamoshina P, Kochetov K, Sidorenko D, Zhavoronkov A. DeepMAge: a methylation aging clock developed with deep learning. Aging Dis. 2021;12:1252–62. https://doi.org/10.14336/AD.2020.1202.
Article PubMed PubMed Central Google Scholar
Levine ME. Assessment of epigenetic clocks as biomarkers of aging in basic and population research. J Gerontol A Biol Sci Med Sci. 2020;75:463–5. https://doi.org/10.1093/gerona/glaa021.
Article PubMed PubMed Central Google Scholar
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67. https://doi.org/10.1016/j.molcel.2012.10.016.
Article PubMed CAS Google Scholar
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. https://doi.org/10.1186/gb-2013-14-10-r115.
Article PubMed PubMed Central Google Scholar
Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10:573–91. https://doi.org/10.18632/aging.101414.
McEwen LM, O’Donnell KJ, McGill MG, Edgar RD, Jones MJ, MacIsaac JL, Lin DTS, Ramadori K, Morin A, Gladish N, et al. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc Natl Acad Sci U S A. 2020;117:23329–35. https://doi.org/10.1073/pnas.1820843116.
Article PubMed CAS Google Scholar
Johnson AA, Torosin NS, Shokhirev MN, Cuellar TL. A set of common buccal CpGs that predict epigenetic age and associate with lifespan-regulating genes. iScience. 2022;25:105304. https://doi.org/10.1016/j.isci.2022.105304.
Shokhirev MN, Torosin NS, Kramer DJ, Johnson AA, Cuellar TL. CheekAge: a next-generation buccal epigenetic aging clock associated with lifestyle and health. Geroscience. 2024;46:3429–43. https://doi.org/10.1007/s11357-024-01094-3.
Article PubMed PubMed Central Google Scholar
Shokhirev MN, Kramer DJ, Corley J, Cox SR, Cuellar TL, Johnson AA. CheekAge, a next-generation epigenetic buccal clock, is predictive of mortality in human blood. Front Aging. 2024;5:1460360. https://doi.org/10.3389/fragi.2024.1460360.
Article PubMed PubMed Central Google Scholar
Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5.
Article PubMed PubMed Central Google Scholar
Horvath S, Oshima J, Martin GM, Lu AT, Quach A, Cohen H, Felton S, Matsuyama M, Lowe D, Kabacik S, et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany NY). 2018;10:1758–75. https://doi.org/10.18632/aging.101508.
Article PubMed CAS Google Scholar
Zhang Q, Vallerga CL, Walker RM, Lin T, Henders AK, Montgomery GW, He J, Fan D, Fowdar J, Kennedy M, et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 2019;11:54. https://doi.org/10.1186/s13073-019-0667-1.
Article PubMed PubMed Central CAS Google Scholar
Knudsen NH, Stanya KJ, Hyde AL, Chalom MM, Alexander RK, Liou YH, Starost KA, Gangl MR, Jacobi D, Liu S, et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science. 2020;368. https://doi.org/10.1126/science.aat3987.
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5. https://doi.org/10.1038/nature08221.
Article PubMed PubMed Central CAS Google Scholar
Hood RB, Terrell ML, Smith AK, Curtis S, Conneely K, Pearson M, Barton H, Barr DB, Marder EM, Marcus M. Elimination of PBB-153; findings from a cohort of Michigan adults. Environ Res. 2023;220:115146. https://doi.org/10.1016/j.envres.2022.115146.
Article PubMed CAS Google Scholar
Marfella R, Prattichizzo F, Sardu C, Fulgenzi G, Graciotti L, Spadoni T, D’Onofrio N, Scisciola L, La Grotta R, Frige C, et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N Engl J Med. 2024;390:900–10. https://doi.org/10.1056/NEJMoa2309822.
Article PubMed PubMed Central CAS Google Scholar
Dubey P, Reddy SY, Singh V, Shi T, Coltharp M, Clegg D, Dwivedi AK. Association of exposure to phthalate metabolites with sex hormones, obesity, and metabolic syndrome in US women. JAMA Netw Open. 2022;5:e2233088. https://doi.org/10.1001/jamanetworkopen.2022.33088.
Article PubMed PubMed Central Google Scholar
McCrory C, Fiorito G, Hernandez B, Polidoro S, O’Halloran AM, Hever A, Ni Cheallaigh C, Lu AT, Horvath S, Vineis P, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76:741–9. https://doi.org/10.1093/gerona/glaa286.
Borrus DS, Sehgal R, Armstrong JF, Kasamoto J, Gonzalez J, Higgins-Chen A. When to trust epigenetic clocks: avoiding false positives in aging interventions. bioRxiv. 2024:2024.2010.2022.619720. https://doi.org/10.1101/2024.10.22.619720.
Liu Z, Leung D, Thrush K, Zhao W, Ratliff S, Tanaka T, Schmitz LL, Smith JA, Ferrucci L, Levine ME. Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell. 2020;19:e13229. https://doi.org/10.1111/acel.13229.
Article PubMed PubMed Central CAS Google Scholar
Levine ME, Higgins-Chen A, Thrush K, Minteer C, Niimi P. Clock work: deconstructing the epigenetic clock signals in aging, disease, and reprogramming. bioRxiv. 2022:2022.2002.2013.480245. https://doi.org/10.1101/2022.02.13.480245
Kabacik S, Lowe D, Fransen L, Leonard M, Ang SL, Whiteman C, Corsi S, Cohen H, Felton S, Bali R, et al. The relationship between epigenetic age and the hallmarks of aging in human cells. Nat Aging. 2022;2:484–93. https://doi.org/10.1038/s43587-022-00220-0.
Article PubMed PubMed Central Google Scholar
Singh PP, Demmitt BA, Nath RD, Brunet A. The genetics of aging: a vertebrate perspective. Cell. 2019;177:200–20. https://doi.org/10.1016/j.cell.2019.02.038.
Article PubMed PubMed Central CAS Google Scholar
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019;18:e13048. https://doi.org/10.1111/acel.13048.
Comments (0)