Artificial intelligence algorithm for preoperative prediction of FIGO stage in ovarian cancer based on clinical features integrated 18F-FDG PET/CT metabolic and radiomics features

Avril N (2004) GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med 45:930–932

CAS  PubMed  Google Scholar 

Babic A, Sasamoto N, Rosner BA, Tworoger SS, Jordan SJ, Risch HA et al (2020) Association between breastfeeding and ovarian cancer risk. JAMA Oncol 6:e200421

Article  PubMed  PubMed Central  Google Scholar 

Boobier S, Osbourn A, Mitchell JBO (2017) Can human experts predict solubility better than computers? J Cheminform 9:63

Article  PubMed  PubMed Central  Google Scholar 

Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC Jr, Beral V et al (2015) Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15:668–679

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunner E, Munzel U (2000) The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation. Biom J 42:17–25

Article  Google Scholar 

Castellucci P, Perrone AM, Picchio M, Ghi T, Farsad M, Nanni C et al (2007) Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun 28:589–595

Article  CAS  PubMed  Google Scholar 

Constantino CS, Leocádio S, Oliveira FPM, Silva M, Oliveira C, Castanheira JC et al (2023) Evaluation of semiautomatic and deep learning-based fully automatic segmentation methods on [(18)F]FDG PET/CT images from patients with lymphoma: influence on tumor characterization. J Digit Imaging 36:1864–1876

Article  PubMed  PubMed Central  Google Scholar 

Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G (2019) Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res 12:28

Article  PubMed  PubMed Central  Google Scholar 

Driessen J, Zwezerijnen GJC, Schöder H, Drees EEE, Kersten MJ, Moskowitz AJ et al (2022) The impact of semiautomatic segmentation methods on metabolic tumor volume, intensity, and dissemination radiomics in (18)F-FDG PET scans of patients with classical hodgkin lymphoma. J Nucl Med 63:1424–1430

Article  CAS  PubMed  PubMed Central  Google Scholar 

du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J (2009) Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer 115:1234–1244

Article  PubMed  Google Scholar 

Efthimiou O, Seo M, Chalkou K, Debray T, Egger M, Salanti G (2024) Developing clinical prediction models: a step-by-step guide. BMJ 386:e078276

Article  PubMed  PubMed Central  Google Scholar 

Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, Smola A (2020) Autogluon-tabular: robust and accurate automl for structured data. arXiv:2003.06505

Ferreira MG, de Salas MS, Sarmiento RG, Sánchez MJD (2018) Changes in the management and prognosis of ovarian cancer due to the new FIGO and WHO classifications: a case series observational descriptive study. Seven years of follow-up. Int J Gynecol Cancer 28:1461–1470

Article  Google Scholar 

Firouzian A, Kelly MD, Declerck JM (2014) Insight on automated lesion delineation methods for PET data. EJNMMI Res 4:69

Article  PubMed  PubMed Central  Google Scholar 

Ghosh K, Bellinger C, Corizzo R, Branco P, Krawczyk B, Japkowicz N (2024) The class imbalance problem in deep learning. Mach Learn 113:4845–4901

Article  Google Scholar 

Glickman A, Paredes P, Carreras-Dieguez N, Ninerola-Baizan A, Gaba L, Pahisa J et al (2022) Evaluation of patients with advanced epithelial ovarian cancer before primary treatment: correlation between tumour burden assessed by [(18)F]FDG PET/CT volumetric parameters and tumour markers HE4 and CA125. Eur Radiol 32:2200–2208

Article  CAS  PubMed  Google Scholar 

Guglielmo P, Marturano F, Bettinelli A, Gregianin M, Paiusco M, Evangelista L (2021) Additional value of PET radiomic features for the initial staging of prostate cancer: a systematic review from the literature. Cancers (Basel). https://doi.org/10.3390/cancers13236026

Article  PubMed  PubMed Central  Google Scholar 

Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G (2017) Learning from class-imbalanced data: Review of methods and applications. Expert Syst Appl 73:220–239

Article  Google Scholar 

Jin J, Zhu H, Zhang J, Ai Y, Zhang J, Teng Y et al (2020) Multiple U-Net-based automatic segmentations and radiomics feature stability on ultrasound images for patients with ovarian cancer. Front Oncol 10:614201

Article  PubMed  Google Scholar 

Johnson JM, Khoshgoftaar TM (2019) Survey on deep learning with class imbalance. J Big Data 6:1–54

Article  Google Scholar 

Jung DC, Kang S, Kim MJ, Park SY, Kim HB (2010) Multidetector CT predictors of incomplete resection in primary cytoreduction of patients with advanced ovarian cancer. Eur Radiol 20:100–107

Article  PubMed  Google Scholar 

Kang M, Zhu C, Lai M, Weng J, Zhuang Y, He H et al (2024) Machine learning-based prediction of large-for-gestational age infants in mothers with gestational diabetes mellitus. J Clin Endocrinol Metab 1–9

Kawakami E, Tabata J, Yanaihara N, Ishikawa T, Koseki K, Iida Y et al (2019) Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers. Clin Cancer Res 25:3006–3015

Article  CAS  PubMed  Google Scholar 

Kim CK, Gupta NC, Chandramouli B, Alavi A (1994) Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 35:164–167

CAS  PubMed  Google Scholar 

Kirillov A, Mintun E, Ravi N (2023) Segment anything proceedings of the IEEE. pp 4015–26

Konishi H, Takehara K, Kojima A, Okame S, Yamamoto Y, Shiroyama Y et al (2014) Maximum standardized uptake value of fluorodeoxyglucose positron emission tomography/computed tomography is a prognostic factor in ovarian clear cell adenocarcinoma. Int J Gynecol Cancer 24:1190–1194

Article  PubMed  Google Scholar 

Kovács AR, Sulina A, Kovács KS, Lukács L, Török P, Lampé R (2023) Prognostic significance of preoperative NLR, MLR, and PLR values in predicting the outcome of primary cytoreductive surgery in serous epithelial ovarian cancer. Diagnostics (Basel). https://doi.org/10.3390/diagnostics13132268

Article  PubMed  PubMed Central  Google Scholar 

Kurokawa T, Yoshida Y, Kawahara K, Tsuchida T, Okazawa H, Fujibayashi Y et al (2004) Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer 109:926–932

Article  CAS  PubMed  Google Scholar 

Lee JW, Cho A, Lee JH, Yun M, Lee JD, Kim YT et al (2014) The role of metabolic tumor volume and total lesion glycolysis on 1⁸F-FDG PET/CT in the prognosis of epithelial ovarian cancer. Eur J Nucl Med Mol Imaging 41:1898–1906

Article  PubMed  Google Scholar 

Li S, Li Y, Zhao M, Wang P, Xin J (2022) Combination of (18)F-fluorodeoxyglucose PET/CT radiomics and clinical features for predicting epidermal growth factor receptor mutations in lung adenocarcinoma. Korean J Radiol 23:921–930

Article  PubMed  PubMed Central  Google Scholar 

Ma J, He Y, Li F, Han L, You C, Wang B (2024) Segment anything in medical images. Nat Commun 15:654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Velasco A, Martínez-Villaseñor L, Miralles-Pechuán L (2024) Addressing class imbalance in healthcare data: machine learning solutions for age-related macular degeneration and preeclampsia. IEEE Lat Am Trans 22:806–820

Article  Google Scholar 

Matsuura T, Otsuka I, Ouchi T, Ouchi E, Asano R, Miyasaka N (2021) Pretreatment maximum standardized uptake value in 18F-fluorodeoxyglucose positron emission tomography-computed tomography as a prognostic factor for ovarian clear cell carcinoma and low-grade serous carcinoma. Taiwan J Obstet Gynecol 60:305–310

Article  PubMed  Google Scholar 

Mazurowski MA, Dong H, Gu H, Yang J, Konz N, Zhang Y (2023) Segment anything model for medical image analysis: an experimental study. Med Image Anal 89:102918

Article  PubMed  PubMed Central  Google Scholar 

Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D, Bobes-Bascarán J, Fernández-Leal Á (2023) Human-in-the-loop machine learning: a state of the art. Artif Intell Rev 56:3005–3054

Comments (0)

No login
gif