Avril N (2004) GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med 45:930–932
Babic A, Sasamoto N, Rosner BA, Tworoger SS, Jordan SJ, Risch HA et al (2020) Association between breastfeeding and ovarian cancer risk. JAMA Oncol 6:e200421
Article PubMed PubMed Central Google Scholar
Boobier S, Osbourn A, Mitchell JBO (2017) Can human experts predict solubility better than computers? J Cheminform 9:63
Article PubMed PubMed Central Google Scholar
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC Jr, Beral V et al (2015) Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15:668–679
Article CAS PubMed PubMed Central Google Scholar
Brunner E, Munzel U (2000) The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation. Biom J 42:17–25
Castellucci P, Perrone AM, Picchio M, Ghi T, Farsad M, Nanni C et al (2007) Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun 28:589–595
Article CAS PubMed Google Scholar
Constantino CS, Leocádio S, Oliveira FPM, Silva M, Oliveira C, Castanheira JC et al (2023) Evaluation of semiautomatic and deep learning-based fully automatic segmentation methods on [(18)F]FDG PET/CT images from patients with lymphoma: influence on tumor characterization. J Digit Imaging 36:1864–1876
Article PubMed PubMed Central Google Scholar
Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G (2019) Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res 12:28
Article PubMed PubMed Central Google Scholar
Driessen J, Zwezerijnen GJC, Schöder H, Drees EEE, Kersten MJ, Moskowitz AJ et al (2022) The impact of semiautomatic segmentation methods on metabolic tumor volume, intensity, and dissemination radiomics in (18)F-FDG PET scans of patients with classical hodgkin lymphoma. J Nucl Med 63:1424–1430
Article CAS PubMed PubMed Central Google Scholar
du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J (2009) Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer 115:1234–1244
Efthimiou O, Seo M, Chalkou K, Debray T, Egger M, Salanti G (2024) Developing clinical prediction models: a step-by-step guide. BMJ 386:e078276
Article PubMed PubMed Central Google Scholar
Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, Smola A (2020) Autogluon-tabular: robust and accurate automl for structured data. arXiv:2003.06505
Ferreira MG, de Salas MS, Sarmiento RG, Sánchez MJD (2018) Changes in the management and prognosis of ovarian cancer due to the new FIGO and WHO classifications: a case series observational descriptive study. Seven years of follow-up. Int J Gynecol Cancer 28:1461–1470
Firouzian A, Kelly MD, Declerck JM (2014) Insight on automated lesion delineation methods for PET data. EJNMMI Res 4:69
Article PubMed PubMed Central Google Scholar
Ghosh K, Bellinger C, Corizzo R, Branco P, Krawczyk B, Japkowicz N (2024) The class imbalance problem in deep learning. Mach Learn 113:4845–4901
Glickman A, Paredes P, Carreras-Dieguez N, Ninerola-Baizan A, Gaba L, Pahisa J et al (2022) Evaluation of patients with advanced epithelial ovarian cancer before primary treatment: correlation between tumour burden assessed by [(18)F]FDG PET/CT volumetric parameters and tumour markers HE4 and CA125. Eur Radiol 32:2200–2208
Article CAS PubMed Google Scholar
Guglielmo P, Marturano F, Bettinelli A, Gregianin M, Paiusco M, Evangelista L (2021) Additional value of PET radiomic features for the initial staging of prostate cancer: a systematic review from the literature. Cancers (Basel). https://doi.org/10.3390/cancers13236026
Article PubMed PubMed Central Google Scholar
Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G (2017) Learning from class-imbalanced data: Review of methods and applications. Expert Syst Appl 73:220–239
Jin J, Zhu H, Zhang J, Ai Y, Zhang J, Teng Y et al (2020) Multiple U-Net-based automatic segmentations and radiomics feature stability on ultrasound images for patients with ovarian cancer. Front Oncol 10:614201
Johnson JM, Khoshgoftaar TM (2019) Survey on deep learning with class imbalance. J Big Data 6:1–54
Jung DC, Kang S, Kim MJ, Park SY, Kim HB (2010) Multidetector CT predictors of incomplete resection in primary cytoreduction of patients with advanced ovarian cancer. Eur Radiol 20:100–107
Kang M, Zhu C, Lai M, Weng J, Zhuang Y, He H et al (2024) Machine learning-based prediction of large-for-gestational age infants in mothers with gestational diabetes mellitus. J Clin Endocrinol Metab 1–9
Kawakami E, Tabata J, Yanaihara N, Ishikawa T, Koseki K, Iida Y et al (2019) Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers. Clin Cancer Res 25:3006–3015
Article CAS PubMed Google Scholar
Kim CK, Gupta NC, Chandramouli B, Alavi A (1994) Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 35:164–167
Kirillov A, Mintun E, Ravi N (2023) Segment anything proceedings of the IEEE. pp 4015–26
Konishi H, Takehara K, Kojima A, Okame S, Yamamoto Y, Shiroyama Y et al (2014) Maximum standardized uptake value of fluorodeoxyglucose positron emission tomography/computed tomography is a prognostic factor in ovarian clear cell adenocarcinoma. Int J Gynecol Cancer 24:1190–1194
Kovács AR, Sulina A, Kovács KS, Lukács L, Török P, Lampé R (2023) Prognostic significance of preoperative NLR, MLR, and PLR values in predicting the outcome of primary cytoreductive surgery in serous epithelial ovarian cancer. Diagnostics (Basel). https://doi.org/10.3390/diagnostics13132268
Article PubMed PubMed Central Google Scholar
Kurokawa T, Yoshida Y, Kawahara K, Tsuchida T, Okazawa H, Fujibayashi Y et al (2004) Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer 109:926–932
Article CAS PubMed Google Scholar
Lee JW, Cho A, Lee JH, Yun M, Lee JD, Kim YT et al (2014) The role of metabolic tumor volume and total lesion glycolysis on 1⁸F-FDG PET/CT in the prognosis of epithelial ovarian cancer. Eur J Nucl Med Mol Imaging 41:1898–1906
Li S, Li Y, Zhao M, Wang P, Xin J (2022) Combination of (18)F-fluorodeoxyglucose PET/CT radiomics and clinical features for predicting epidermal growth factor receptor mutations in lung adenocarcinoma. Korean J Radiol 23:921–930
Article PubMed PubMed Central Google Scholar
Ma J, He Y, Li F, Han L, You C, Wang B (2024) Segment anything in medical images. Nat Commun 15:654
Article CAS PubMed PubMed Central Google Scholar
Martinez-Velasco A, Martínez-Villaseñor L, Miralles-Pechuán L (2024) Addressing class imbalance in healthcare data: machine learning solutions for age-related macular degeneration and preeclampsia. IEEE Lat Am Trans 22:806–820
Matsuura T, Otsuka I, Ouchi T, Ouchi E, Asano R, Miyasaka N (2021) Pretreatment maximum standardized uptake value in 18F-fluorodeoxyglucose positron emission tomography-computed tomography as a prognostic factor for ovarian clear cell carcinoma and low-grade serous carcinoma. Taiwan J Obstet Gynecol 60:305–310
Mazurowski MA, Dong H, Gu H, Yang J, Konz N, Zhang Y (2023) Segment anything model for medical image analysis: an experimental study. Med Image Anal 89:102918
Article PubMed PubMed Central Google Scholar
Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D, Bobes-Bascarán J, Fernández-Leal Á (2023) Human-in-the-loop machine learning: a state of the art. Artif Intell Rev 56:3005–3054
Comments (0)