Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I et al (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74(3):229–263
Cai Y, Chen M, Gong Y, Tang G, Shu Z, Chen J et al (2024) Androgen-repressed LncRNA LINC01126 drives castration-resistant prostate cancer by regulating the switch between O-GlcNAcylation and phosphorylation of androgen receptor. Clin Transl Med 14(1):e1531
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Zhao J, Duan Z, Gong T, Chen W, Wang S et al (2019) miR–27b–3p and miR–607 cooperatively regulate BLM gene expression by directly targeting the 3’–UTR in PC3 cells. Mol Med Rep 19(6):4819–4831
CAS PubMed PubMed Central Google Scholar
Chen B, Liu C, Long H, Bai G, Zhu Y, Xu H (2023) N(6)–methyladenosine–induced long non–coding RNA PVT1 regulates the miR–27b–3p/BLM axis to promote prostate cancer progression. Int J Oncol 62(1):16
Chinese guidelines for (2019) Diagnosis and treatment of prostate cancer 2018 (English version). Chin J Cancer Res 31(1):67–83
Debelec Butuner B, Ertunc Hasbal N, Isel E, Roggenbuck D, Korkmaz KS (2023) Androgen receptor contributes to repairing DNA damage induced by inflammation and oxidative stress in prostate cancer. Turk J Biol 47(5):325–335
Article PubMed PubMed Central Google Scholar
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M (2019) Epitranscriptomic signatures in LncRNAs and their possible roles in Cancer. Genes (Basel) 10(1):52
Gao Q, Cheng X, Gao X (2024) Circ_0089761 accelerates colorectal cancer metastasis and immune escape via miR-27b-3p/PD-L1 axis. Physiol Rep 12(23):e70137
Article CAS PubMed PubMed Central Google Scholar
Ge Q, Li J, Yang F, Tian X, Zhang M, Hao Z et al (2023a) Molecular classifications of prostate cancer: basis for individualized risk stratification and precision therapy. Ann Med 55(2):2279235
Article PubMed PubMed Central Google Scholar
Ge WJ, Huang H, Wang T, Zeng WH, Guo M, Ren CR et al (2023b) Long non-coding RNAs in hepatocellular carcinoma. Pathol Res Pract 248:154604
Gogola S, Rejzer M, Bahmad HF, Abou-Kheir W, Omarzai Y, Poppiti R (2023) Epithelial-to-Mesenchymal Transition-Related markers in prostate cancer: from bench to bedside. Cancers (Basel) 15(8):2309
Goncharov AP, Vashakidze N, Kharaishvili G, Epithelial-Mesenchymal Transition (2024) A fundamental cellular and microenvironmental process in benign and malignant prostate pathologies. Biomedicines 12(2):418
Haghighi R, Castillo-Acobo RY, A HA, Ehymayed HM, Alhili F, Mirzaei M et al (2023) A thorough Understanding of the role of LncRNA in prostate cancer pathogenesis; current knowledge and future research directions. Pathol Res Pract 248:154666
Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X (2019) LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer 19(1):1157
Article CAS PubMed PubMed Central Google Scholar
Kanesvaran R, Castro E, Wong A, Fizazi K, Chua MLK, Zhu Y et al (2022) Pan-Asian adapted ESMO clinical practice guidelines for the diagnosis, treatment and follow-up of patients with prostate cancer. ESMO Open 7(4):100518
Article CAS PubMed PubMed Central Google Scholar
Kazimierczyk M, Wrzesinski J (2021) Long Non-Coding RNA epigenetics. Int J Mol Sci 22(11):6166
Le Guevelou J, Ploussard G, Roubaud G, Sargos P (2024) The testosterone replacement therapy for prostate cancer patients: Time to take the leap? Andrology 13(2):173–175
Liang D, Tian C, Zhang X (2022) LncRNA MNX1–AS1 promotes prostate cancer progression through regulating miR–2113/MDM2 axis. Mol Med Rep 26(1):231
Lin XH, Liu ZY, Zhang DY, Zhang S, Tang WQ, Li DP et al (2022) circRanGAP1/miR-27b-3p/NRAS Axis May promote the progression of hepatocellular carcinoma. Exp Hematol Oncol 11(1):92
Article CAS PubMed PubMed Central Google Scholar
Liu B, Jiang HY, Yuan T, Zhou WD, Xiang ZD, Jiang QQ et al (2021) Long Non-coding RNA AFAP1-AS1 facilitates prostate Cancer progression by regulating miR-15b/IGF1R Axis. Curr Pharm Des 27(41):4261–4269
Article CAS PubMed Google Scholar
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS et al (2022) Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 132(3):e155031
Pan SY, Chen WC, Huang CP, Hsu CY, Chang YH (2023) The association of prostate Cancer and urinary tract infections: A new perspective of prostate Cancer pathogenesis. Med (Kaunas) 59(3):483
Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW (2022) Tumor immune microenvironment LncRNAs. Brief Bioinform 23(1):bbab504
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J (2023) Prostate cancer: genetics, epigenetics and the need for immunological biomarkers. Int J Mol Sci24(16):12797
Shree B, Das K, Sharma V (2023) Emerging role of transforming growth factor-beta-regulated long non-coding RNAs in prostate cancer pathogenesis. Cancer Pathog Ther 1(3):195–204
Taheri M, Badrlou E, Hussen BM, Kashi AH, Ghafouri-Fard S, Baniahmad A (2023) Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front Oncol 13:1123101
Tomecka P, Kunachowicz D, Gorczynska J, Gebuza M, Kuznicki J, Skinderowicz K et al (2024) Factors determining Epithelial-Mesenchymal transition in Cancer progression. Int J Mol Sci 25(16):8972
Wang M, Yin C, Wu Z, Wang X, Lin Q, Jiang X et al (2023) The long transcript of LncRNA TMPO-AS1 promotes bone metastases of prostate cancer by regulating the CSNK2A1/DDX3X complex in Wnt/beta-catenin signaling. Cell Death Discov 9(1):287
Article CAS PubMed PubMed Central Google Scholar
Wu C, Chen J, Wang D (2023) LncRNA VPS9D1-AS1 regulates miR-187-3p/fibroblast growth factor receptor-like 1 axis to promote proliferation, migration, and invasion of prostate cancer cells. Chin J Physiol 66(5):295–305
Article CAS PubMed Google Scholar
Yang G, Li T, Liu J, Quan Z, Liu M, Guo Y et al (2023) LncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics 115(2):110599
Article CAS PubMed Google Scholar
Yang L, Ruan Y, Chen B, Zhu Y, Xu H (2024) Circ_0001671 regulates prostate cancer progression through miR-27b-3p/BLM axis. Sci Rep 14(1):12181
Article CAS PubMed PubMed Central Google Scholar
Ye Y, Li SL, Wang SY (2018) Construction and analysis of mRNA, MiRNA, LncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer. PLoS ONE 13(8):e0198055
Article PubMed PubMed Central Google Scholar
Zhang Q, Shao W, Li Y, Liu L, Chen W, Wang C et al (2022) Long non-coding RNA LINC01128 affects proliferation, migration, and invasion of glioma cells by regulating miR-27b-3p. Folia Neuropathol 60(3):338–345
Zhong M, Fang Z, Ruan B, Xiong J, Li J, Song Z (2022) LINC01128 facilitates the progression of pancreatic cancer through up-regulation of LDHA by targeting miR-561-5p. Cancer Cell Int 22(1):93
Article CAS PubMed PubMed Central Google Scholar
Zhou X, Li Y, Wu L, Tian C, Wu X (2024) Upregulated LncRNA LINC01128 in colorectal cancer accelerates cell growth and predicts malignant prognosis through sponging miR-363-3p. J Cancer Res Clin Oncol 150(5):276
Article CAS PubMed PubMed Central Google Scholar
Zhu C, Bi W, Li H, Wang W (2022) CircLONP2 accelerates esophageal squamous cell carcinoma progression via direct MiR-27b-3p-ZEB1 Axis. Front Oncol 12:822839
Zhu Y, Wang Z, Li H, Ren Z, Zi T, Qin X et al (2024) LncRNA HCG18 promotes prostate cancer progression by regulating the miR-512-3p/HK-2 axis. Asian J Urol 11(4):575–585
Comments (0)