Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global cancer observatory: cancer today. International Agency for Research on Cancer. Lyon, France. https://gco.iarc.who.int/today. Accessed 4 Feb 2025.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes, Liver Flukes and Helicobacter pylori 61:1–241. (1994). PMID: 7715068; PMCID: PMC7681621.
Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. Special Report: Policy A review of human carcinogens-Part B: biological agents. Lancet Oncol. 2012;10:321–2. https://doi.org/10.1016/S1470-2045(09)70096-8.
Coker OO, Dai Z, Nie Y, Zhao G, Cao L, Nakatsu G, et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut. 2018;67:1024–32. https://doi.org/10.1136/gutjnl-2017-314281.
Article CAS PubMed Google Scholar
Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep. 2014;4:1–11. https://doi.org/10.1038/srep04202.
Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, MacHado JC, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 2018;67:226–36. https://doi.org/10.1136/gutjnl-2017-314205.
Article CAS PubMed Google Scholar
Appiah EM, Yakubu B, Salifu SP. Comprehensive microbial network analysis of gastric microbiome reveal key species affecting gastric carcinogenesis. The Microbe. 2023;1:100009. https://doi.org/10.1016/J.MICROB.2023.100009.
Gunathilake MN, Lee J, Choi IJ, Kim YIL, Ahn Y, Park C, et al. Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study. Sci Rep. 2019;9:1–11. https://doi.org/10.1038/s41598-019-50054-x.
Liu X, Shao L, Liu X, Ji F, Mei Y, Cheng Y, et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 2019;40:336–48. https://doi.org/10.1016/j.ebiom.2018.12.034.
Chen XH, Wang A, Chu AN, Gong YH, Yuan Y. Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.01261.
Article PubMed PubMed Central Google Scholar
Wang G, Wang H, Ji X, Wang T, Zhang Y, Jiang W, et al. Intratumoral microbiome is associated with gastric cancer prognosis and therapy efficacy. Gut Microbes. 2024. https://doi.org/10.1080/19490976.2024.2369336.
Article PubMed PubMed Central Google Scholar
Wang L, Xin Y, Zhou J, Tian Z, Liu C, Yu X, et al. Gastric Mucosa-Associated Microbial Signatures of Early Gastric Cancer. Front Microbiol. 2020;11:1548. https://doi.org/10.3389/fmicb.2020.01548.
Article PubMed PubMed Central Google Scholar
Wang L, Zhou J, Xin Y, Geng C, Tian Z, Yu X, et al. Bacterial overgrowth and diversification of microbiota in gastric cancer. Eur J Gastroenterol Hepatol. 2016;28:261–6. https://doi.org/10.1097/MEG.0000000000000542.
Article CAS PubMed PubMed Central Google Scholar
Castaño-Rodríguez N, Goh KL, Fock KM, Mitchell HM. Kaakoush NO. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-16289-2.
Article PubMed PubMed Central Google Scholar
Cristescu R, Lee J, Nebozhyn M, Kim K-M, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56. https://doi.org/10.1038/nm.3850.
Article CAS PubMed Google Scholar
Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet. 2018;391:1023–75. https://doi.org/10.1016/S0140-6736(17)33326-3.
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180-90. https://doi.org/10.1016/S2214-109X(19)30488-7.
WHO Classification of Tumors Editorial Board. WHO Classification of Tumors, 5th edition: Digestive System Tumors. 5th ed. France: IARC; 2019. ISBN-13: 978-92-832-4499-8
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9. https://doi.org/10.1038/nature13480.
Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O’Hanlon JF. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol. 2002;68:1548–55.
Article CAS PubMed PubMed Central Google Scholar
Shen H, Rogelj S, Kieft TL. Sensitive, real-time PCR detects low-levels of contamination by Legionella pneumophila in commercial reagents. Mol Cell Probes. 2006;20:147–53. https://doi.org/10.1016/j.mcp.2005.09.007.
Article CAS PubMed Google Scholar
Newsome T, Li B-J, Zou N, Lo S-C. Presence of Bacterial Phage-Like DNA Sequences in Commercial Taq DNA Polymerase Reagents. J Clin Microbiol. 2004;42:2264–7. https://doi.org/10.1128/JCM.42.5.2264-2267.2004.
Article CAS PubMed PubMed Central Google Scholar
Motley T, Picuri JM, Crowder CD, Minich JJ, Hofstadler SA, Eshoo MW. Improved Multiple Displacement Amplification (iMDA) and Ultraclean Reagents. BMC Genom. 2014;15:1.
Mohammadi T, Reesink HW, Vandenbroucke-Grauls CMJE, Savelkoul PHM. Removal of contaminating DNA from commercial nucleic acid extraction kit reagents. J Microbiol Method. 2004. https://doi.org/10.1016/j.mimet.2004.11.018.
Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016. https://doi.org/10.1186/s13099-016-0103-7.
Article PubMed PubMed Central Google Scholar
Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, et al. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 2021;29:281-298.e5. https://doi.org/10.1016/J.CHOM.2020.12.001.
Article CAS PubMed PubMed Central Google Scholar
Ai B, Mei Y, Liang D, Wang T, Cai H, Yu D. Uncovering the special microbiota associated with occurrence and progression of gastric cancer by using RNA-sequencing. Sci Reports. 2023;13:1–11. https://doi.org/10.1038/s41598-023-32809-9.
Lehr K, Nikitina D, Vilchez-Vargas R, Steponaitiene R, Thon C, Skieceviciene J, et al. Microbial composition of tumorous and adjacent gastric tissue is associated with prognosis of gastric cancer. Sci Reports. 2023;13:1–11. https://doi.org/10.1038/s41598-023-31740-3.
Byrd DA, Fan W, Greathouse KL, Wu MC, Xie H, Wang X. The intratumor microbiome is associated with microsatellite instability Brief Communication. JNCI: J Nat Cancer Inst. 2023;115:989–93. https://doi.org/10.1093/jnci/djad083.
Article PubMed PubMed Central Google Scholar
Genomics England. The National Genomics Research and Healthcare Knowledgebase v5 2019.
NIH National Cancer Institute. Genomic Data Commons Data Portal n.d. https://portal.gdc.cancer.gov/ (accessed June 5, 2021).
Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell. 2018;33:721–35. https://doi.org/10.1016/j.ccell.2018.03.010.
Article CAS PubMed PubMed Central Google Scholar
Hewitt LC, Saito Y, Wang T, Matsuda Y, Oosting J, Silva S, AN, et al. KRAS status is related to histological phenotype in gastric cancer results from a large multicentre study. Gastric Cancer. 2019;22:1193–203. https://doi.org/10.1007/s10120-019-00972-6.
Comments (0)