Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS. Cefotaxime. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs. 1983;25(3):223–89. https://doi.org/10.2165/00003495-198325030-00001.
Todd PA, Brogden RN. Cefotaxime. An update of its pharmacology and therapeutic use. Drugs. 1990;40(4):608–51. https://doi.org/10.2165/00003495-199040040-00008.
WHO. Model list of essential medicines. 2023. https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists. Accessed 25 Sep 2023.
Arafat M, Kirchhoefer C, Mikov M, Sarfraz M, Löbenberg R. Nanosized liposomes containing bile salt: a vesicular nanocarrier for enhancing oral bioavailability of BCS class III drug. J Pharm Pharm Sci. 2017;20:305–18. https://doi.org/10.18433/J3CK88.
Esmieu F, Guibert J, Rosenkilde HC, Ho I, Le Go A. Pharmacokinetics of cefotaxime in normal human volunteers. J Antimicrob Chemother. 1980;6(Suppl A):83–92. https://doi.org/10.1093/jac/6.suppl_a.83.
Doluisio JT. Clinical pharmacokinetics of cefotaxime in patients with normal and reduced renal function. Rev Infect Dis. 1982;4(Suppl):S333–45. https://doi.org/10.1093/clinids/4.supplement_2.s333.
Bergan T. Pharmacokinetic properties of the cephalosporins. Drugs. 1987;34(Suppl 2):89–104. https://doi.org/10.2165/00003495-198700342-00008.
Claforan® (Cefotaxime) Product Monograph. Sanofi-aventis Canada Inc. https://products.sanofi.ca/en/claforan.pdf. Revised November 12, 2014. Accessed 10 Apr 2023.
Reeves DS, White LO, Holt HA, Bahari D, Bywater MJ, Bax RP. Human metabolism of cefotaxime. J Antimicrob Chemother. 1980;6(Suppl A):93–101. https://doi.org/10.1093/jac/6.suppl_a.93.
Jones RN, Barry AL, Thornsberry C. Antimicrobial activity of desacetylcefotaxime alone and in combination with cefotaxime: evidence of synergy. Rev Infect Dis. 1982;4(Suppl):S366–73. https://doi.org/10.1093/clinids/4.supplement_2.s366.
Chamberlain J, Coombes JD, Dell D, Fromson JM, Ings RJ, Macdonald CM, McEwen J. Metabolism of cefotaxime in animals and man. J Antimicrob Chemother. 1980;6(Suppl A):69–78. https://doi.org/10.1093/jac/6.suppl_a.69.
Jehl F, Peter JD, Picard A, Dupeyron JP, Marescaux J, Sibilly A, Monteil H. Investigation of the biliary clearances of cefotaxime and desacetylcefotaxime by an original procedure in cholecystectomised patients. Infection. 1987;15(6):450–4. https://doi.org/10.1007/BF01647231.
Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92. https://doi.org/10.1007/s40262-017-0506-8.
Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am. 2009;23(4):791–815, vii. https://doi.org/10.1016/j.idc.2009.06.008.
Article PubMed PubMed Central Google Scholar
Fillastre JP, Leroy A, Humbert G, Godin M. Pharmacokinetics of cefotaxime in subjects with normal and impaired renal function. J Antimicrob Chemother. 1980;6(Suppl A):103–11. https://doi.org/10.1093/jac/6.suppl_a.103.
Ohkawa M, Okasho A, Motoi I, Tokunaga S, Shoda R, Kawaguchi S, Sawaki M, Shimamura M, Hirano S, Kuroda K, Awazu S. Elimination kinetics of cefotaxime and desacetyl cefotaxime in patients with renal insufficiency and during hemodialysis. Chemotherapy. 1983;29(1):4–12. https://doi.org/10.1159/000238166.
Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney disease. Lancet. 2021;398(10302):786–802. https://doi.org/10.1016/S0140-6736(21)00519-5. (Epub 2021 Jun 24).
Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022;12(1):7–11. https://doi.org/10.1016/j.kisu.2021.11.003. (Epub 2022 Mar 18).
Article PubMed PubMed Central Google Scholar
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1–150. https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf. Accessed 25 Sep 2023.
Pasha M, Zamir A, Rasool MF, Saeed H, Ahmad T, Alqahtani NS, Alqahtani LS, Alqahtani F. A comprehensive physiologically based pharmacokinetic model for predicting vildagliptin pharmacokinetics: insights into dosing in renal impairment. Pharmaceuticals (Basel). 2024;17(7):924.
Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn. 2016;43(5):481–504. https://doi.org/10.1007/s10928-016-9492-y. (Epub 2016 Sep 19).
Article PubMed PubMed Central Google Scholar
Zhuang X, Lu C. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B. 2016;6(5):430–40. https://doi.org/10.1016/j.apsb.2016.04.004. (Epub 2016 Jun 23).
Article PubMed PubMed Central Google Scholar
Peters SA, Dolgos H. Requirements to establishing confidence in physiologically based pharmacokinetic (PBPK) models and overcoming some of the challenges to meeting them. Clin Pharmacokinet. 2019;58(11):1355–71. https://doi.org/10.1007/s40262-019-00790-0.
Article PubMed PubMed Central Google Scholar
Li Q, Guan Y, Xia C, Wu L, Zhang H, Wang Y. Physiologically-based pharmacokinetic modeling and dosing optimization of cefotaxime in preterm and term neonates. J Pharm Sci. 2024. S0022-3549(24)00086-8. (Epub ahead of print).
Glöckner WM, Höffler U, Kindler J, Peters G, Sieberth HG. Elimination kinetics of cefotaxime in patients with renal insufficiency requiring dialysis. J Antimicrob Chemother. 1980;6(Suppl A):219–23. https://doi.org/10.1093/jac/6.suppl_a.219.
Wise R, Baker S, Livingston R. Comparison of cefotaxime and moxalactam pharmacokinetics and tissue levels. Antimicrob Agents Chemother. 1980;18(3):369–71. https://doi.org/10.1128/AAC.18.3.369.
Article PubMed PubMed Central Google Scholar
Lüthy R, Blaser J, Bonetti A, Simmen H, Wise R, Siegenthaler W. Comparative multiple-dose pharmacokinetics of cefotaxime, moxalactam, and ceftazidime. Antimicrob Agents Chemother. 1981;20(5):567–75. https://doi.org/10.1128/AAC.20.5.567.
Article PubMed PubMed Central Google Scholar
Harding SM, Monro AJ, Thornton JE, Ayrton J, Hogg MI. The comparative pharmacokinetics of ceftazidime and cefotaxime in healthy volunteers. J Antimicrob Chemother. 1981;8(Suppl B):263–72. https://doi.org/10.1093/jac/8.suppl_b.263.
Kemmerich B, Lode H, Belmega G, Jendroschek T, Borner K, Koeppe P. Comparative pharmacokinetics of cefoperazone, cefotaxime, and moxalactam. Antimicrob Agents Chemother. 1983;23(3):429–34. https://doi.org/10.1128/AAC.23.3.429.
Article PubMed PubMed Central Google Scholar
Ings RM, Reeves DS, White LO, Bax RP, Bywater MJ, Holt HA. The human pharmacokinetics of cefotaxime and its metabolites and the role of renal tubular secretion on their elimination. J Pharmacokinet Biopharm. 1985;13(2):121–42. https://doi.org/10.1007/BF01059394.
Hary L, Andrejak M, Leleu S, Orfila J, Capron JP. The pharmacokinetics of ceftriaxone and cefotaxime in cirrhotic patients with ascites. Eur J Clin Pharmacol. 1989;36(6):613–6. https://doi.org/10.1007/BF00637745.
Ings RM, Fillastre JP, Godin M, Leroy A, Humbert G. The pharmacokinetics of cefotaxime and its metabolites in subjects with normal and impaired renal function. Rev Infect Dis. 1982;4(Suppl):S379–91. https://doi.org/10.1093/clinids/4.supplement_2.s379.
Matzke GR, Abraham PA, Halstenson CE, Keane WF. Cefotaxime and desacetyl cefotaxime kinetics in renal impairment. Clin Pharmacol Ther. 1985;38(1):31–6. https://doi.org/10.1038/clpt.1985.130.
Comments (0)