Sorcin: mechanisms of action in cancer hallmarks, drug resistance and opportunities in therapeutics

Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther. 2024. https://doi.org/10.1038/s41392-024-01823-2.

Article  PubMed  PubMed Central  Google Scholar 

Passaro A, Al Bakir M, Hamilton EG, Diehn M, André F, Roy-Chowdhuri S, et al. Cancer biomarkers—emerging trends and clinical implications for personalized treatment. Cell. 2024;187:1617. https://doi.org/10.1016/j.cell.2024.02.041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Exp Mol Med. 2022;54:1670. https://doi.org/10.1038/s12276-022-00864-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther. 2022;7:1–27. https://doi.org/10.1038/s41392-022-01136-2.

Article  CAS  Google Scholar 

Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors. 2024. https://doi.org/10.3390/s24010037.

Article  PubMed  PubMed Central  Google Scholar 

Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther. 2024;9:1–29. https://doi.org/10.1038/s41392-024-01760-0.

Article  Google Scholar 

Ilari A, Fiorillo A, Poser E, Lalioti VS, Sundell GN, Ivarsson Y, et al. Structural basis of sorcin-mediated calcium-dependent signal transduction. Sci Rep. 2015;5:1–16. https://doi.org/10.1038/srep16828.

Article  CAS  Google Scholar 

Carillo KJ, He Y, Ye Q, Delaeter N, Chen Y, Orban J, et al. Solution NMR backbone resonance assignment of the full-length resistance-related calcium-binding protein Sorcin. Biomol NMR Assign. 2024. https://doi.org/10.1007/s12104-024-10196-0.

Article  PubMed  Google Scholar 

Genovese I, Carotti A, Ilari A, Fiorillo A, Battista T, Colotti G, et al. Profiling calcium-dependent interactions between Sorcin and intrinsically disordered regions of human proteome. Biochim Biophys Acta - Gen Subj. 2020;1864:129618. https://doi.org/10.1016/j.bbagen.2020.129618.

Article  CAS  PubMed  Google Scholar 

Lalioti VS, Ilari A, Connell DJO, Poser E, Sandoval IV, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates polo-like kinase 1 and is necessary for mitosis. PLoS ONE. 2014;9:1–12. https://doi.org/10.1371/journal.pone.0085438.

Article  CAS  Google Scholar 

Shabnam B, Padmavathi G, Banik K, Girisa S, Monisha J, Sethi G, et al. Sorcin a potential molecular target for cancer therapy. Transl Oncol. 2018;11:1379–89. https://doi.org/10.1016/j.tranon.2018.08.015.

Article  PubMed  PubMed Central  Google Scholar 

Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat. 2017;32:23–46. https://doi.org/10.1016/j.drup.2017.10.003.

Article  PubMed  Google Scholar 

Genovese I, Fiorillo A, Ilari A, Masciarelli S, Fazi F, Colotti G. Binding of doxorubicin to Sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis. 2017;8:1–9. https://doi.org/10.1016/j.drup.2017.10.003.

Article  Google Scholar 

Mao J, Ling F, Gislaine Pires Sanches J, Yu X, Wei Y, Zhang J. The potential mechanism of action of sorcin and its interacting proteins. Clin Chim Acta. 2020;510:741–5. https://doi.org/10.1016/j.cca.2020.09.011.

Article  CAS  PubMed  Google Scholar 

Colotti G, Poser E, Fiorillo A, Genovese I, Chiarini V, Ilari A. Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. Molecules. 2014. https://doi.org/10.3390/molecules190913976.

Article  PubMed  PubMed Central  Google Scholar 

Yokota T, Kouno J, Adachi K, Takahashi H, Teramoto A, Matsumoto K, et al. Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, α-PIX and sorcin. Acta Neuropathol. 2006;111:29–38. https://doi.org/10.1007/s00401-005-1085-6.

Article  CAS  PubMed  Google Scholar 

Liu X, Chen L, Feng B, Liu G. Reversing effect of sorcin in the drug resistance of human nasopharyngeal carcinoma. Anat Rec (Hoboken). 2014;297:215–21. https://doi.org/10.1002/ar.22832.

Article  CAS  PubMed  Google Scholar 

Gong Z, Sun P, Chu H, Zhu H, Sun D, Chen J. Overexpression of sorcin in multidrug-resistant human breast cancer. Oncol Lett. 2014;8:2393–8. https://doi.org/10.3892/ol.2014.2543.

Article  PubMed  PubMed Central  Google Scholar 

Gao Y, Li W, Liu X, Gao F, Zhao X. Reversing effect and mechanism of soluble resistance-related calcium-binding protein on multidrug resistance in human lung cancer A549/DDP cells. Mol Med Rep. 2015;11:2118–24. https://doi.org/10.3892/mmr.2014.2936.

Article  CAS  PubMed  Google Scholar 

Jain V, Akhtar J, Priya R, Sakhuja P, Goyal S, Agarwal AK, et al. Tissue proteome analysis for profiling proteins associated with lymph node metastasis in gallbladder cancer. BMC Cancer. 2023. https://doi.org/10.1186/s12885-023-10840-3.

Article  PubMed  PubMed Central  Google Scholar 

Tuo H, Shu F, She S, Yang M, Zou XQ, Huang J, et al. Sorcin induces gastric cancer cell migration and invasion contributing to STAT3 activation. Oncotarget. 2017;8:104258–71. https://doi.org/10.18632/oncotarget.22208.

Article  PubMed  PubMed Central  Google Scholar 

Ling F, Zhang H, Sun Y, Meng J, Sanches JGP, Huang H, et al. AnnexinA7 promotes epithelial–mesenchymal transition by interacting with Sorcin and contributes to aggressiveness in hepatocellular carcinoma. Cell Death Dis. 2021;12:1–12. https://doi.org/10.1038/s41419-021-04287-2.

Article  CAS  Google Scholar 

Zhang S, Deng M, Wang Q, Jiang Y, Xu Q, Cao L. Level of Sorcin expression influences chemoresistance and overall survival in patients with ovarian cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019;44:1113–9. https://doi.org/10.11817/j.issn.1672-7347.2019.190153.

Article  PubMed  Google Scholar 

Dabaghi M, Rahgozar S, Moshtaghian J, Moafi A, Abedi M, Pourabutaleb E. Overexpression of SORCIN is a prognostic biomarker for multidrug-resistant pediatric acute lymphoblastic leukemia and correlates with upregulated MDR1/P-gp. Genet Test Mol Biomarkers. 2016;20:516–21. https://doi.org/10.1089/gtmb.2016.0031.

Article  CAS  PubMed  Google Scholar 

Hu Y, Li S, Yang M, Yan C, Fan D, Zhou Y, et al. Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat. 2014;143:287–99. https://doi.org/10.1007/s10549-013-2809-2.

Article  CAS  PubMed  Google Scholar 

Liu Y, Zheng H, Gu AM, Li Y, Wang T, Li C, et al. Identification and validation of a metabolism-related prognostic signature associated with M2 macrophage infiltration in gastric cancer. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241310625.

Article  PubMed  PubMed Central  Google Scholar 

Gupta K, Sirohi VK, Kumari S, Shukla V, Manohar M, Popli P, et al. Sorcin is involved during embryo implantation via activating VEGF / PI3K / Akt pathway in mice. J Mol Endocrinol. 2018. https://doi.org/10.1530/JME-17-0153.

Article  PubMed  Google Scholar 

Tong W, Sun D, Wang Q, Suo J. Sorcin enhances metastasis and promotes epithelial-to-mesenchymal transition of colorectal cancer. Cell Biochem Biophys. 2015;72:453–9. https://doi.org/10.1007/s12013-014-0486-3.

Article  CAS  PubMed  Google Scholar 

Abreu Velez AM, Howard MS. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N Am J Med Sci. 2015;7:176. https://doi.org/10.4103/1947-2714.157476.

Article 

Comments (0)

No login
gif