Investigation of potential anti-metastatic effect of metformin and caffeic acid combination therapy in breast cancer cell line in in-vitro culture model

Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol. 2022;12: 860508. https://doi.org/10.3389/fonc.2022.860508.

Article  PubMed  PubMed Central  Google Scholar 

Bashraheel, S. S., Kheraldine, H., Khalaf, S., & Moustafa, A. A. (2023). Metformin and HER2-positive breast cancer Mechanisms and therapeutic implications. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 162, 114676. https://doi.org/10.1016/j.biopha.2023.114676

Bekezhankyzy, Z., Nurzhan, S., Berdigaliyev, N., Sergazy, S., Maulenkul, T., & Aljofan, M. (2023). The antiproliferative potential and mechanism of action of metformin in MCF-7 cells. Future science OA, 9(5), FSO859. https://doi.org/10.2144/fsoa-2022-0080

Cejuela M, Martin-Castillo B, Menendez JA, Pernas S. Metformin and breast cancer: where are we now? Int J Mol Sci. 2022;23(5):2705. https://doi.org/10.3390/ijms23052705.

Article  PubMed  PubMed Central  Google Scholar 

Chiang, Y. F., Lin, I. C., Huang, K. C., Chen, H. Y., Ali, M., Huang, Y. J., & Hsia, S. M. (2023). Caffeic acid’s role in mitigating polycystic ovary syndrome by countering apoptosis and ER stress triggered by oxidative stress. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 166, 115327. Advance online publication. https://doi.org/10.1016/j.biopha.2023.115327

Eyre R, Alférez DG, Santiago-Gómez A, Spence K, McConnell JC, Hart C, Simões BM, Lefley D, Tulotta C, Storer J, Gurney A, Clarke N, Brown M, Howell SJ, Sims AH, Farnie G, Ottewell PD, Clarke RB. Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun. 2019;10(1):5016. https://doi.org/10.1038/s41467-019-12807-0.

Article  PubMed  PubMed Central  Google Scholar 

Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9. https://doi.org/10.1038/nprot.2006.339.

Article  PubMed  Google Scholar 

Hadad SM, Hardie DG, Appleyard V, Thompson AM. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2014;16(8):746–52. https://doi.org/10.1007/s12094-013-1144-8.

Article  Google Scholar 

Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Wojtyczka RD, Buszman E, Stojko J. Caffeic Acid Versus Caffeic Acid Phenethyl Ester in the Treatment of Breast Cancer MCF-7 Cells: Migration Rate Inhibition. Integr Cancer Ther. 2018;17(4):1247–59. https://doi.org/10.1177/1534735418801521.

Article  PubMed  PubMed Central  Google Scholar 

Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33. https://doi.org/10.1038/nprot.2007.30.

Article  PubMed  Google Scholar 

Liu J, Li J, Chen H, Wang R, Li P, Miao Y, Liu P. Metformin suppresses proliferation and invasion of drug-resistant breast cancer cells by activation of the Hippo pathway. J Cell Mol Med. 2020;24(10):5786–96. https://doi.org/10.1111/jcmm.15241.

Article  PubMed  PubMed Central  Google Scholar 

Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. Journal of visualized experiments: JoVE. 2012;63: e3998. https://doi.org/10.3791/3998.

Article  Google Scholar 

Mahmoudi G, Ehteshaminia Y, Kokhaei P, Jalali SF, Jadidi-Niaragh F, Pagheh AS, Enderami SE, Kenari SA, Hassannia H. Enhancement of targeted therapy in combination with metformin on human breast cancer cell lines. Cell Commun Signal. 2024;22(1):10. https://doi.org/10.1186/s12964-023-01446-0.

Article  PubMed  PubMed Central  Google Scholar 

Mishra SR, Mahapatra KK, Behera BP, Bhol CS, Praharaj PP, Panigrahi DP, Patra S, Singh A, Patil S, Dhiman R, Patra SK, Bhutia SK. Inflammasomes in cancer: Effect of epigenetic and autophagic modulations. Semin Cancer Biol. 2022;83:399–412. https://doi.org/10.1016/j.semcancer.2020.09.013.

Article  PubMed  Google Scholar 

Oh S, Cho Y, Chang M, Park S, Kwon H. Metformin decreases 2-HG production through the MYC-PHGDH pathway in suppressing breast cancer cell proliferation. Metabolites. 2021;11(8):480. https://doi.org/10.3390/metabo11080480.

Article  PubMed  PubMed Central  Google Scholar 

Oršolić N, Kunštić M, Kukolj M, Gračan R, Nemrava J. Oxidative stress, polarization of macrophages and tumour angiogenesis: Efficacy of caffeic acid. Chem Biol Interact. 2016;256:111–24. https://doi.org/10.1016/j.cbi.2016.06.027.

Article  PubMed  Google Scholar 

Rezaei-Seresht, H., Cheshomi, H., Falanji, F., Movahedi-Motlagh, F., Hashemian, M., & Mireskandari, E. (2019). Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna journal of phytomedicine, 9(6), 574–586. https://doi.org/10.22038/AJP.2019.13475

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tülüce Y, Hussein AI, Koyuncu İ, Kiliç A, Durgun M. The effect of a bis-structured Schiff base on apoptosis, cytotoxicity, and DNA damage of breast cancer cells. J Biochem Mol Toxicol. 2022;36(10): e23148. https://doi.org/10.1002/jbt.23148.

Article  PubMed  Google Scholar 

Tülüce Y, Alhammud H, Keleş AY, Köstekci S. The apoptotic, cytotoxic, and anti-migration effects of sodium deoxycholate in a breast cancer cell line and its modulation on PON1 as a predictive risk marker. Curr Mol Med. 2024. https://doi.org/10.2174/0115665240312216241003060934.

Article  PubMed  Google Scholar 

Tülüce Y, Keleş AY, Köstekci S. Assessment of redox homeostasis via genotoxicity, cytotoxicity, apoptosis and NRF-2 in colorectal cancer cell lines after treatment with Ganoderma lucidum extract. Drug Chem Toxicol. 2024;47(5):693–709. https://doi.org/10.1080/01480545.2023.2257403.

Article  PubMed  Google Scholar 

Tyszka-Czochara M, Bukowska-Strakova K, Majka M. Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35 cells and augment anticancer activity of Cisplatin via cell cycle regulation. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 2017;106(Pt A):260–72. https://doi.org/10.1016/j.fct.2017.05.065.

Article  PubMed  Google Scholar 

Xin, M., Wang, Y., Ren, Q., & Guo, Y. (2019). Formononetin and metformin act synergistically to inhibit growth of MCF-7 breast cancer cells in vitro. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 109, 2084–2089. https://doi.org/10.1016/j.biopha.2018.09.033

Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, Zhang X, Khan NUH, Wang L, Zhou J. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. Journal of experimental & clinical cancer research: CR. 2021;40(1):206. https://doi.org/10.1186/s13046-021-02012-7.

Article  PubMed Central  Google Scholar 

Comments (0)

No login
gif