Differential Expression of Skeletal Muscle Sites and Fast and Slow Muscle Fibers in Mongolian Horses

Bao, T., Han, H., Li, B., et al., The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses, Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2020, vol. 33, p. 100649. https://doi.org/10.1016/j.cbd.2019.100649.

Bou, T., Han, H., Mongke, T., et al., Fast and slow myofiber-specific expression profiles are affected by noncoding RNAs in Mongolian horses, Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2022, vol. 41, p. 100942. https://doi.org/10.1016/j.cbd.2021.100942

Article  CAS  PubMed  Google Scholar 

Agarwal, V., Bell, G.W., Nam, J.W., et al., Predicting effective microRNA target sites in mammalian mRNAs, Elife, 2015, vol. 4, p. 5005. https://doi.org/10.7554/eLife.05005

Article  Google Scholar 

Baar, K., Epigenetic control of skeletal muscle fibre type, Acta Physiol., 2010, vol. 199, no. 4, pp. 477–487. https://doi.org/10.1111/j.1748-1716.2010.02121

Article  CAS  Google Scholar 

Ota, H., Ueki, Y., Yamazaki, K., et al., Head and neck cancer fungating wounds: a novel odour transferrer, BMJ Supportive Palliative Care, 2022, vol. 26. https://doi.org/10.1136/spcare-2022-003824

Pagliara, E., Pasinato, A., Valazza, A., et al., Multibody computer model of the entire equine forelimb simulates forces causing catastrophic fractures of the carpus during a traditional race, Animals, 2022, vol. 12, no. 6. https://doi.org/10.3390/ani12060737

Zeng, Z., Liu, M., Liu, Y., Anatomy features of the shoulder joint in asymptomatic Chinese Han adults, BMC Musculoskeletal Disord., 2023, vol. 24, no. 1, pp. 1–6. https://doi.org/10.1186/s12891-023-06172-9

Article  Google Scholar 

Pérez-Robledo, F., Sánchez-González, J.L., Bermejo-Gil, B.M., et al., Electromyographic response of the abdominal muscles and stabilizers of the trunk to reflex locomotion therapy (RLT): a preliminary study, J. Clin. Med., 2022, vol. 11, no. 13. https://doi.org/10.3390/jcm11133866

Mayer, W.P. and Akay, T., The role of muscle spindle feedback in the guidance of hindlimb movement by the ipsilateral forelimb during locomotion in mice, Eneuro, 2021, vol. 8, no. 6. https://doi.org/10.1523/ENEURO.0432-21.2021

Dienes, J., Hicks, B., Slater, C., et al., Comprehensive dynamic and kinematic analysis of the rodent hindlimb during over ground walking, Sci. Rep., 2022, vol. 12, no. 1, p. 19725. https://doi.org/10.1038/s41598-022-20288-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall, P., Stubbs, C., Anderson, D.E., et al., Rabbit hindlimb kinematics and ground contact kinetics during the stance phase of gait, Peer J., 2022, vol. 17, no. 10. https://doi.org/10.7717/peerj.13611

Li, X., Ha, M., Warner, R.D., et al., Genetic lines influenced the texture, collagen and intramuscular fat of pork longissimus and semimembranosus, Meat Sci., 2024, vol. 207. https://doi.org/10.1016/j.meatsci.2023.109376

Lamm, B.M., Paley, D., and Herzenberg, J.E., Gastrocnemius soleus recession: a simpler, more limited approach, J. Am. Pediatr. Med. Assoc., 2005, vol. 95, no. 1, pp. 18–25. https://doi.org/10.7547/0950018

Article  Google Scholar 

Pertea, M., Kim, D., Pertea, G.M., et al., Transcript-level expression analysis of RNA-seq experiments with HISAT, String Tie and Ballgown, Nat. Protoc., 2016, vol. 11, no. 9, pp. 1650–1667. https://doi.org/10.1038/nprot.2016.095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayturk, U., RNA-seq in skeletal biology, Cur. Osteoporosis Rep., 2019, vol. 17, no. 4, pp. 178–185. https://doi.org/10.1007/s11914-019-00517-x

Article  Google Scholar 

Guo, M., Wang, Z., Gao, Z., et al., Alfalfa leaf meal as a new protein feedstuff improves meat quality by modulating lipid metabolism and antioxidant capacity of finishing pigs, Food Chem.: X, 2023, vol. 27, no. 19. https://doi.org/10.1016/j.fochx.2023.100815

Aizawa, K., Iemitsu, M., Maeda, S., et al., Endurance exercise training enhances local sex steroidogenesis in skeletal muscle, Med. Sci. Sports Exercise, 2011, vol. 43, no. 11, pp. 2072–2080. https://doi.org/10.1249/MSS.0b013e31821e9d74

Article  CAS  Google Scholar 

Waters, D.L., Aguirre, L., Gurney, B., et al., Effect of aerobic or resistance exercise, or both, on intermuscular and visceral fat and physical and metabolic function in older adults with obesity while dieting, J. Gerontol., Ser. A, 2022, vol. 77, no. 1, pp. 131–139. https://doi.org/10.1093/gerona/glab111

Article  Google Scholar 

Zhang, X., Tang, B., Li, J., et al., Comparative transcriptome analysis reveals mechanisms of restriction feeding on lipid metabolism in ducks, Poult. Sci., 2023, vol. 102, no. 10. https://doi.org/10.1016/j.psj.2023.102963

Ferreira-Baptista, C., Queirós, A., Ferreira, R., et al., Retinoic acid induces the osteogenic differentiation of cat adipose tissue-derived stromal cells from distinct anatomical sites, J. Anat., 2023, vol. 242, no. 2, pp. 277–288. https://doi.org/10.1111/joa.13758

Article  CAS  PubMed  Google Scholar 

Liu, B., Li, J., Li, J.M., et al., HOXC-AS2 mediates the proliferation, apoptosis, and migration of non-small cell lung cancer by combining with HOXC13 gene, Cell Cycle, 2021, vol. 20, no. 2, pp. 236–246. https://doi.org/10.1080/15384101.2020.1868161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soendenbroe, C., Karlsen, A., Svensson, R.B., et al., Marked irregular myofiber shape is a hallmark of human skeletal muscle aging and is reversed by heavy resistance training, bioRxiv, 2023, vol. 6, no. 5, p. 543651. https://doi.org/10.1002/jcsm.13405

Article  Google Scholar 

Furrer, R., Heim, B., Schmid, S., et al., Molecular control of endurance training adaptation in male mouse skeletal muscle, Nat. Metab., 2023, vol. 5, no. 11, pp. 2020–2035. https://doi.org/10.1038/s42255-023-00891-y

Article  PubMed  PubMed Central  Google Scholar 

Vishnuraj, M.R., Ajay, G., Aravind, et al., Duplex real-time PCR assay with high-resolution melt analysis for the detection and quantification of Listeria species and Listeria monocytogenes in meat products, J. Food Sci. Technol., 2023, vol. 60, no. 5, pp. 1541–1550. https://doi.org/10.1007/s13197-023-05695-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muramatsu, K., Niimi, N., Ikutomo, M., et al., Motor skills training-induced activation of descending pathways mediating cortical command to hindlimb motoneurons in experimental diabetic rats, Exp. Neurol., 2023, vol. 363. https://doi.org/10.1016/j.expneurol.2023.114357

Jiang, C., Zhang, J., Song, Y., et al., FOXO1 regulates bovine skeletal muscle cells differentiation by targeting MYH3, Int. J. Biol. Macromol., 2024, vol. 260, no. 2. https://doi.org/10.1016/j.ijbiomac.2024.129643

Żochowska-Kujawska, J., Kotowicz, M., Sobczak, M., et al., Effect of muscle fibre type on the fatty acids profile and lipid oxidation of dry-cured venison SM (semimembranosus) muscle, Foods, 2022, vol. 11, no. 14. https://doi.org/10.3390/foods11142052

Kirkpatrick, L.T., Elgin, J.M., Matarneh, S.K., et al., Inherent factors influence color variations in semimembranosus muscle of pigs, Meat Sci., 2022, vol. 185. https://doi.org/10.1016/j.meatsci.2021.108721

Cisterna, B., Lofaro, F.D., Lacavalla, M.A., et al., Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training, Front. Cell Dev. Biol., 2023, vol. 13, no. 11. https://doi.org/10.3389/fcell.2023.1273309

Eldor, R., Norton, L., Fourcaudot, M., et al., Increased lipid availability for three days reduces whole body glucose uptake, impairs muscle mitochondrial function and initiates opposing effects on PGC-1α promoter methylation in healthy subjects, PLoS One, 2017, vol. 12, no. 12. https://doi.org/10.1371/journal.pone.0188208

Berman, Y. and North, K.N., A gene for speed: the emerging role of α-actinin-3 in muscle metabolism, Physiology, 2010, vol. 25, no. 4, pp. 250–259. https://doi.org/10.1152/physiol.00008.2010

Article  CAS  PubMed  Google Scholar 

Ma, S., Xing, X., Huang, H., et al., Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk, Cell Metab., 2023, vol. 35, no. 11, pp. 2028–2043. https://doi.org/10.1016/j.cmet.2023.10.013

Article  CAS  PubMed  Google Scholar 

Wang, W., Zhang, T., Du, L., et al., Transcriptomic analysis reveals diverse expression patterns underlying the fiber diameter of oxidative and glycolytic skeletal muscles in steers, Meat Sci., 2024, vol. 207. https://doi.org/10.1016/j.meatsci.2023.109350

Wu, X., Zhou, X., Chu, M., et al., Whole transcriptome analyses and comparison reveal the metabolic differences between oxidative and glycolytic skeletal muscles of yak, Meat Sci., 2022, vol. 194. https://doi.org/10.1016/j.meatsci.2022.108948

Delezie, J., Weihrauch, M., Maier, G., et al., BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 32, pp. 16111–16120. https://doi.org/10.1073/pnas.1900544116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin, C., Qin, R., Ma, Z., et al., Oxaloacetic acid induces muscle energy substrate depletion and fatigue by JNK-mediated mitochondrial uncoupling, FASEB J., 2024, vol. 38, no. 2, p. e23373. https://doi.org/10.1096/fj.202301796R

Article  CAS  PubMed  Google Scholar 

Diao, Z., Shimokawa, F., Yoshioka, H., et al., Possibility of uncoupling protein 1 expression in bovine fast-twitch muscle fibers, J. Vet. Med. Sci., 2023, vol. 85, no. 6, pp. 587–591. https://doi.org/10.1292/jvms.23-0057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xuan, M.F., Luo, Z.B., Wang, J.X., et al., Shift from slow-to fast-twitch muscle fibres in skeletal muscle of newborn heterozygous and homozygous myostatin-knockout piglets, Reprod., Fertil. Dev., 2019, vol. 31, no. 10, pp. 1628–1636. https://doi.org/10.1071/RD19103

Article  CAS  PubMed  Google Scholar 

Tafoya, S. and Bustamante, C., Molecular switch-like regulation in motor proteins, Philos. Trans. R. Soc., B, 2018, vol. 373, no. 1749. https://doi.org/10.1098/rstb.2017.0181

Dowling, P., Gargan, S., Swandulla, D., et al., Fiber-type shifting in sarcopenia of old age: proteomic profiling of the contractile apparatus of skeletal muscles, Int. J. Mol. Sci., 2023, vol. 24, no. 3. https://doi.org/10.3390/ijms24032415

Sun, D., Hamlin, D., Butterfield, A., et al., Electro chemiluminescent immunoassay for rat skeletal troponin I (Tnni2) in serum, J. Pharm. Toxicol. Meth., 2010, vol. 61, no. 1, pp. 52–58. https://doi.org/10.1016/j.vascn.2009.09.002

Article  CAS  Google Scholar 

Shrimpton, A.E. and Hoo, J.J., A TNNI2 mutation in a family with distal arthrogryposis type 2B, Eur. J. Med. Genet., 2006, vol. 49, no. 2, pp. 201–206. https://doi.org/10.1016/j.ejmg.2005.06.003

Article  PubMed  Google Scholar 

Li, M.X. and Hwang, P.M., Structure and function of cardiac troponin C (TNNC1): implications for heart failure, cardiomyopathies, and troponin modulating drugs, Gene, 2015, vol. 571, no. 2, pp. 153–166. https://doi.org/10.1016/j.gene.2015.07.074

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif