Żylicz, J.J., Bousard, A., Žumer, K., et al., The implication of early chromatin changes in X chromosome inactivation, Cell., 2019, vol. 176, nos. 1–2, pp. 182–197. https://doi.org/10.1016/j.cell.2018.11.041
Article CAS PubMed PubMed Central Google Scholar
Furlan, G. and Galupa, R., Mechanisms of choice in X-chromosome inactivation, Cells., 2022, vol. 11, no. 3. https://doi.org/10.3390/cells11030535
Li, J., Ming, Z., Yang, L., et al., Long noncoding RNA XIST: mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities, Genes Dis., 2022, vol. 9, no. 6, pp. 1478–1492. https://doi.org/10.1016/j.gendis.2022.04.007
Article CAS PubMed PubMed Central Google Scholar
Loda, A., Collombet, S., and Heard, E., Gene regulation in time and space during X-chromosome inactivation, Nat. Rev. Mol. Cell Biol., 2022, vol. 23, no. 4, pp. 231–249. https://doi.org/10.1038/s41580-021-00438-7
Article CAS PubMed Google Scholar
Markaki, Y., Gan Chong, J., Wang, Y., et al., Xist nucleates local protein gradients to propagate silencing across the X chromosome, Cell, 2021, vol. 184, no. 25, pp. 6174–6192. https://doi.org/10.1016/j.cell.2021.10.022
Article CAS PubMed PubMed Central Google Scholar
Aguilar, R., Spencer, K.B., Kesner, B., et al., Targeting Xist with compounds that disrupt RNA structure and X inactivation, Nature, 2022, vol. 604, no. 7904, pp. 160–166. https://doi.org/10.1038/s41586-022-04537-z
Article CAS PubMed PubMed Central Google Scholar
Dror, I., Chitiashvili, T., Tan, S.Y.X., et al., XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells, Cell., 2024, vol. 187, no. 1, pp. 110–129. https://doi.org/10.1016/j.cell.2023.11.033
Article CAS PubMed Google Scholar
He, Q., Kim, H., Huang, R., et al., The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation, Cell Stem Cell, 2015, vol. 17, no. 3, pp. 273–286. https://doi.org/10.1016/j.stem.2015.07.022
Article CAS PubMed PubMed Central Google Scholar
Sarma, K., Cifuentes-Rojas, C., Ergun, A., et al., ATRX directs binding of PRC2 to Xist RNA and Polycomb targets, Cell, 2014, vol. 159, no. 4, pp. 869–883. https://doi.org/10.1016/j.cell.2014.10.019
Article CAS PubMed PubMed Central Google Scholar
Liu, W.Q., Li, J.L., Wang, J., et al., Genetic evaluation of copy number variations, loss of heterozygosity, and single-nucleotide variant levels in human embryonic stem cells with or without skewed X chromosome inactivation, Stem Cells Dev., 2015, vol. 24, no. 15, pp. 1779–1792. https://doi.org/10.1089/scd.2014.046.3
Article CAS PubMed Google Scholar
Chen, Y., Ou, Z., Song, B., et al., Generation of integration-free induced pluripotent stem cells (GZHMUi001-A) by reprogramming peripheral blood mononuclear cells from a 47,XXX syndrome patient, Stem Cell Res., 2017, vol. 23, pp. 57–60. https://doi.org/10.1016/j.scr.2017.06.002
Article CAS PubMed Google Scholar
Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, no. 4, pp. 357–359. https://doi.org/10.1038/nmeth.1923
Article CAS PubMed PubMed Central Google Scholar
Kim, D., Paggi, J.M., Park, C., et al., Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype, Nat. Biotechnol., 2019, vol. 37, no. 8, pp. 907–915. https://doi.org/10.1038/s41587-019-0201-4
Article CAS PubMed PubMed Central Google Scholar
Anders, S., Pyl, P.T., Huber, W., HTSeq—a Python framework to work with high-throughput sequencing data, Bioinformatics, 2015, vol. 31, no. 2, pp. 166–169. https://doi.org/10.1093/bioinformatics/btu638
Article CAS PubMed Google Scholar
Putri, G.H., Anders, S., Pyl, P.T., et al., Analysing high-throughput sequencing data in Python with HTSeq 2.0, Bioinformatics, 2022, vol. 38, no. 10, pp. 2943–2945. https://doi.org/10.1093/bioinformatics/btac166
Article CAS PubMed PubMed Central Google Scholar
Wang, L., Feng, Z., Wang, X., and Zhang, X., DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 2010, vol. 26, no. 1, pp. 136–138. https://doi.org/10.1093/bioinformatics/btp612
Article CAS PubMed Google Scholar
Langfelder, P. and Horvath, S., WGCNA: an R package for weighted correlation network analysis, BMC Bioinf., 2008, vol. 9. https://doi.org/10.1186/1471-2105-9-559
Zeng, J., Lai, C., Luo, J., and Li, L., Functional investigation and two-sample Mendelian randomization study of neuropathic pain hub genes obtained by WGCNA analysis, Front. Neurosci., 2023, vol. 17. https://doi.org/10.3389/fnins.2023.1134330
Shannon, P., Markiel, A., Ozier, O., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 2003, vol. 13, no. 11, pp. 2498–2504. https://doi.org/10.1101/gr.1239303
Article CAS PubMed PubMed Central Google Scholar
Xie, R., Li, B., Jia, L., and Li, Y., Identification of core genes and pathways in melanoma metastasis via bioinformatics analysis, Int. J. Mol. Sci., 2022, vol. 23, no. 2. https://doi.org/10.3390/ijms23020794
Szklarczyk, D., Kirsch, R., Koutrouli, M., et al., The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Res., 2023, vol. 51, no. D1, pp. D638–D646. https://doi.org/10.1093/nar/gkac1000
Article CAS PubMed Google Scholar
Cloutier, M., Kumar, S., Buttigieg, E., et al., Preventing erosion of X-chromosome inactivation in human embryonic stem cells, Nat. Commun., 2022, vol. 13, no. 1, p. 2516. https://doi.org/10.1038/s41467-022-30259-x
Article CAS PubMed PubMed Central Google Scholar
Ratnakumar, K. and Bernstein, E., ATRX: the case of a peculiar chromatin remodeler, Epigenetics, 2013, vol. 8, no. 1, pp. 3–9. https://doi.org/10.4161/epi.23271
Article CAS PubMed PubMed Central Google Scholar
Sailau, Z.K., Bogolyubov, D.S., and Bogolyubova, I.O., Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryogenesis, Acta Histochem., 2017, vol. 119, no. 1, pp. 18–25. https://doi.org/10.1016/j.acthis.2016.11.001
Article CAS PubMed Google Scholar
Bogolyubova, I.O., Sailau, Z.K., and Bogolyubov, D.S., Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryos during normal development and developmental arrest in vitro, Life (Basel), 2023, vol. 14, no. 1. https://doi.org/10.3390/life14010005
Archacki, R., Yatusevich, R., Buszewicz, D., et al., Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression, Nucleic Acids Res., 2017, vol. 45, no. 6, pp. 3116–3129. https://doi.org/10.1093/nar/gkw1273
Article CAS PubMed Google Scholar
Schaefer, I.M. and Hornick, J.L., SWI/SNF complex-deficient soft tissue neoplasms: an update, Semin. Diagn. Pathol., 2021, vol. 38, no. 3, pp. 222–231. https://doi.org/10.1053/j.semdp.2020.05.005
Li, Z., Liu, L., Jiang, S., et al., LncExpDB: an expression database of human long non-coding RNAs, Nucleic Acids Res., 2021, vol. 49, no. D1, pp. D962–D968. https://doi.org/10.1093/nar/gkaa850
Article CAS PubMed Google Scholar
Minajigi, A., Froberg, J., Wei, C., et al., Chromosomes: a comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation, Science, 2015, vol. 349, no. 6245. https://doi.org/10.1126/science.aab2276
Giraud, G., Terrone, S., and Bourgeois, C.F., Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation, BMB Rep., 2018, vol. 51, no. 12, pp. 613–622. https://doi.org/10.5483/BMBRep.2018.51.12.234
Article CAS PubMed PubMed Central Google Scholar
Vallot, C., Patrat, C., Collier, A.J., et al., XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development, Cell Stem Cell, 2017, vol. 20, no. 1, pp. 102–111. https://doi.org/10.1016/j.stem.2016.10.014
Comments (0)