Bioinformatic Analysis of the Molecular Pathways of ATRX and XIST in X Chromosome Inactivation

Żylicz, J.J., Bousard, A., Žumer, K., et al., The implication of early chromatin changes in X chromosome inactivation, Cell., 2019, vol. 176, nos. 1–2, pp. 182–197. https://doi.org/10.1016/j.cell.2018.11.041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furlan, G. and Galupa, R., Mechanisms of choice in X-chromosome inactivation, Cells., 2022, vol. 11, no. 3. https://doi.org/10.3390/cells11030535

Li, J., Ming, Z., Yang, L., et al., Long noncoding RNA XIST: mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities, Genes Dis., 2022, vol. 9, no. 6, pp. 1478–1492. https://doi.org/10.1016/j.gendis.2022.04.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loda, A., Collombet, S., and Heard, E., Gene regulation in time and space during X-chromosome inactivation, Nat. Rev. Mol. Cell Biol., 2022, vol. 23, no. 4, pp. 231–249. https://doi.org/10.1038/s41580-021-00438-7

Article  CAS  PubMed  Google Scholar 

Markaki, Y., Gan Chong, J., Wang, Y., et al., Xist nucleates local protein gradients to propagate silencing across the X chromosome, Cell, 2021, vol. 184, no. 25, pp. 6174–6192. https://doi.org/10.1016/j.cell.2021.10.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguilar, R., Spencer, K.B., Kesner, B., et al., Targeting Xist with compounds that disrupt RNA structure and X inactivation, Nature, 2022, vol. 604, no. 7904, pp. 160–166. https://doi.org/10.1038/s41586-022-04537-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dror, I., Chitiashvili, T., Tan, S.Y.X., et al., XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells, Cell., 2024, vol. 187, no. 1, pp. 110–129. https://doi.org/10.1016/j.cell.2023.11.033

Article  CAS  PubMed  Google Scholar 

He, Q., Kim, H., Huang, R., et al., The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation, Cell Stem Cell, 2015, vol. 17, no. 3, pp. 273–286. https://doi.org/10.1016/j.stem.2015.07.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarma, K., Cifuentes-Rojas, C., Ergun, A., et al., ATRX directs binding of PRC2 to Xist RNA and Polycomb targets, Cell, 2014, vol. 159, no. 4, pp. 869–883. https://doi.org/10.1016/j.cell.2014.10.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, W.Q., Li, J.L., Wang, J., et al., Genetic evaluation of copy number variations, loss of heterozygosity, and single-nucleotide variant levels in human embryonic stem cells with or without skewed X chromosome inactivation, Stem Cells Dev., 2015, vol. 24, no. 15, pp. 1779–1792. https://doi.org/10.1089/scd.2014.046.3

Article  CAS  PubMed  Google Scholar 

Chen, Y., Ou, Z., Song, B., et al., Generation of integration-free induced pluripotent stem cells (GZHMUi001-A) by reprogramming peripheral blood mononuclear cells from a 47,XXX syndrome patient, Stem Cell Res., 2017, vol. 23, pp. 57–60. https://doi.org/10.1016/j.scr.2017.06.002

Article  CAS  PubMed  Google Scholar 

Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, no. 4, pp. 357–359. https://doi.org/10.1038/nmeth.1923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, D., Paggi, J.M., Park, C., et al., Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype, Nat. Biotechnol., 2019, vol. 37, no. 8, pp. 907–915. https://doi.org/10.1038/s41587-019-0201-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anders, S., Pyl, P.T., Huber, W., HTSeq—a Python framework to work with high-throughput sequencing data, Bioinformatics, 2015, vol. 31, no. 2, pp. 166–169. https://doi.org/10.1093/bioinformatics/btu638

Article  CAS  PubMed  Google Scholar 

Putri, G.H., Anders, S., Pyl, P.T., et al., Analysing high-throughput sequencing data in Python with HTSeq 2.0, Bioinformatics, 2022, vol. 38, no. 10, pp. 2943–2945. https://doi.org/10.1093/bioinformatics/btac166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, L., Feng, Z., Wang, X., and Zhang, X., DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 2010, vol. 26, no. 1, pp. 136–138. https://doi.org/10.1093/bioinformatics/btp612

Article  CAS  PubMed  Google Scholar 

Langfelder, P. and Horvath, S., WGCNA: an R package for weighted correlation network analysis, BMC Bioinf., 2008, vol. 9. https://doi.org/10.1186/1471-2105-9-559

Zeng, J., Lai, C., Luo, J., and Li, L., Functional investigation and two-sample Mendelian randomization study of neuropathic pain hub genes obtained by WGCNA analysis, Front. Neurosci., 2023, vol. 17. https://doi.org/10.3389/fnins.2023.1134330

Shannon, P., Markiel, A., Ozier, O., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 2003, vol. 13, no. 11, pp. 2498–2504. https://doi.org/10.1101/gr.1239303

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, R., Li, B., Jia, L., and Li, Y., Identification of core genes and pathways in melanoma metastasis via bioinformatics analysis, Int. J. Mol. Sci., 2022, vol. 23, no. 2. https://doi.org/10.3390/ijms23020794

Szklarczyk, D., Kirsch, R., Koutrouli, M., et al., The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic Acids Res., 2023, vol. 51, no. D1, pp. D638–D646. https://doi.org/10.1093/nar/gkac1000

Article  CAS  PubMed  Google Scholar 

Cloutier, M., Kumar, S., Buttigieg, E., et al., Preventing erosion of X-chromosome inactivation in human embryonic stem cells, Nat. Commun., 2022, vol. 13, no. 1, p. 2516. https://doi.org/10.1038/s41467-022-30259-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ratnakumar, K. and Bernstein, E., ATRX: the case of a peculiar chromatin remodeler, Epigenetics, 2013, vol. 8, no. 1, pp. 3–9. https://doi.org/10.4161/epi.23271

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sailau, Z.K., Bogolyubov, D.S., and Bogolyubova, I.O., Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryogenesis, Acta Histochem., 2017, vol. 119, no. 1, pp. 18–25. https://doi.org/10.1016/j.acthis.2016.11.001

Article  CAS  PubMed  Google Scholar 

Bogolyubova, I.O., Sailau, Z.K., and Bogolyubov, D.S., Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryos during normal development and developmental arrest in vitro, Life (Basel), 2023, vol. 14, no. 1. https://doi.org/10.3390/life14010005

Archacki, R., Yatusevich, R., Buszewicz, D., et al., Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression, Nucleic Acids Res., 2017, vol. 45, no. 6, pp. 3116–3129. https://doi.org/10.1093/nar/gkw1273

Article  CAS  PubMed  Google Scholar 

Schaefer, I.M. and Hornick, J.L., SWI/SNF complex-deficient soft tissue neoplasms: an update, Semin. Diagn. Pathol., 2021, vol. 38, no. 3, pp. 222–231. https://doi.org/10.1053/j.semdp.2020.05.005

Article  PubMed  Google Scholar 

Li, Z., Liu, L., Jiang, S., et al., LncExpDB: an expression database of human long non-coding RNAs, Nucleic Acids Res., 2021, vol. 49, no. D1, pp. D962–D968. https://doi.org/10.1093/nar/gkaa850

Article  CAS  PubMed  Google Scholar 

Minajigi, A., Froberg, J., Wei, C., et al., Chromosomes: a comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation, Science, 2015, vol. 349, no. 6245. https://doi.org/10.1126/science.aab2276

Giraud, G., Terrone, S., and Bourgeois, C.F., Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation, BMB Rep., 2018, vol. 51, no. 12, pp. 613–622. https://doi.org/10.5483/BMBRep.2018.51.12.234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vallot, C., Patrat, C., Collier, A.J., et al., XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development, Cell Stem Cell, 2017, vol. 20, no. 1, pp. 102–111. https://doi.org/10.1016/j.stem.2016.10.014

Article  CAS 

Comments (0)

No login
gif