Bray, F., Ferlay, J., Soerjomataram, I., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA—Cancer J. Clin., 2018, vol. 68, no. 6, pp. 394–424. https://doi.org/10.3322/caac.21492
Arnold, M., Sierra, M.S., Laversanne, M., et al., Global patterns and trends in colorectal cancer incidence and mortality, Gut, 2017, vol. 66, no. 4, pp. 683–691. https://doi.org/10.1136/gutjnl-2015-310912
Brenner, D.R., Heer, E., Sutherland, R.L., et al., National trends in colorectal cancer incidence among older and younger adults in Canada, JAMA Network Open, 2019, vol. 2, no. 7, p. e198090. https://doi.org/10.1001/jamanetworkopen.2019.8090
Article PubMed PubMed Central Google Scholar
Sridharan, M., Hubbard, J.M., and Grothey, A., Colorectal cancer: how emerging molecular understanding affects treatment decisions, Oncology (Williston Park), 2014, vol. 28, no. 2, pp. 110–118.
Weiland, M., Gao, X.H., Zhou, L., et al., Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases, RNA Biol., 2012, vol. 9, no. 6, pp. 850–859. https://doi.org/10.4161/rna.20378
Article CAS PubMed Google Scholar
Martens-Uzunova, E.S., Olvedy, M., and Jenster, G., Beyond microRNA—novel RNAs derived from small non-coding RNA and their implication in cancer, Cancer Lett., 2013, vol. 340, no. 2, pp. 201–211. https://doi.org/10.1016/j.canlet.2012.11.058
Article CAS PubMed Google Scholar
Slattery, M.L., Herrick, J.S., Mullany, L.E., et al., The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer, Genes Chromosomes Cancer, 2017, vol. 56, no. 11, pp. 769–787. https://doi.org/10.1002/gcc.22481
Article CAS PubMed PubMed Central Google Scholar
Onur, E. and Denkçeken, T., Integrative analysis of molecular genetic targets and pathways in colorectal cancer through screening large-scale microarray data, Int. J. Data Min. Bioinf., 2021, vol. 26, nos. 1–2, pp. 81–98. https://doi.org/10.1504/ijdmb.2021.124112
Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Fuccio, L., Repici, A., Hassan, C., et al., Why attempt en bloc resection of non-pedunculated colorectal adenomas? A systematic review of the prevalence of superficial submucosal invasive cancer after endoscopic submucosal dissection, Gut, 2018, vol. 67, no. 8, pp. 1464–1474. https://doi.org/10.1136/gutjnl-2017-315103
Røed Skårderud, M., Polk, A., Kjeldgaard Vistisen, K., et al., Efficacy and safety of regorafenib in the treatment of metastatic colorectal cancer: a systematic review, Cancer Treat. Rev., 2018, vol. 62, pp. 61–73. https://doi.org/10.1016/j.ctrv.2017.10.011
Article CAS PubMed Google Scholar
Chen, N., Li, W., Huang, K., et al., Increased platelet—lymphocyte ratio closely relates to inferior clinical features and worse long-term survival in both resected and metastatic colorectal cancer: an updated systematic review and meta-analysis of 24 studies, Oncotarget, 2017, vol. 8, no. 19, pp. 32356–32369. https://doi.org/10.18632/oncotarget.16020
Article PubMed PubMed Central Google Scholar
Shan, S.W., Fang, L., Shatseva, T., et al., Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways, J. Cell Sci., 2013, vol. 126, no. 6, pp. 1517–1530. https://doi.org/10.1242/jcs.122895
Article CAS PubMed Google Scholar
Wu, Q., Luo, G., Yang, Z., et al., miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells, FEBS Lett., 2014, vol. 588, no. 12, pp. 2055–2062. https://doi.org/10.1016/j.febslet.2014.04.036
Article CAS PubMed Google Scholar
Yang, X., Du, W.W., Li, H., et al., Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion, Nucleic Acids Res., 2013, vol. 41, no. 21, pp. 9688–9704. https://doi.org/10.1093/nar/gkt680
Article CAS PubMed PubMed Central Google Scholar
Li, L., He, L., Zhao, J.L., et al., MiR-17-5p up-regulates YES1 to modulate the cell cycle progression and apoptosis in ovarian cancer cell lines, J. Cell Biochem., 2015, vol. 116, no. 6, pp. 1050–1059. https://doi.org/10.1002/jcb.25060
Article CAS PubMed Google Scholar
Yang, F., Li, Y., Xu, L., et al., miR-17 as a diagnostic biomarker regulates cell proliferation in breast cancer, Onco Targets Ther., 2017, vol. 10, pp. 543–550. https://doi.org/10.2147/ott.S127723
Article CAS PubMed PubMed Central Google Scholar
Luo, H., Zou, J., Dong, Z., et al., Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma, Biochem. J., 2012, vol. 442, no. 2, pp. 311–321. https://doi.org/10.1042/bj20111517
Article CAS PubMed Google Scholar
Yu, W., Wang, J., Li, C., et al., miR-17-5p promotes the invasion and migration of colorectal cancer by regulating HSPB2, J. Cancer, 2022, vol. 13, no. 3, pp. 918–931. https://doi.org/10.7150/jca.65614
Article CAS PubMed PubMed Central Google Scholar
Fu, F., Jiang, W., Zhou, L., et al., Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer, Transl. Oncol., 2018, vol. 11, no. 2, pp. 221–232. https://doi.org/10.1016/j.tranon.2017.12.012
Article PubMed PubMed Central Google Scholar
Wang, M., Gu, H., Wang, S., et al., Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer, Mol. Med. Rep., 2012, vol. 5, no. 6, pp. 1514–1520. https://doi.org/10.3892/mmr.2012.828
Article CAS PubMed Google Scholar
Zeng, X., Xiang, J., Wu, M., et al., Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma, PLoS One, 2012, vol. 7, no. 10. https://doi.org/10.1371/journal.pone.0046367
Chen, H.Z., Tsai, S.Y., and Leone, G., Emerging roles of E2Fs in cancer: an exit from cell cycle control, Nat. Rev. Cancer, 2009, vol. 9, no. 11, pp. 785–797. https://doi.org/10.1038/nrc2696
Article CAS PubMed PubMed Central Google Scholar
Wang, Y., Deng, O., Feng, Z., et al., RNF126 promotes homologous recombination via regulation of E2F1-mediated BRCA1 expression, Oncogene, 2016, vol. 35, no. 11, pp. 1363–1372. https://doi.org/10.1038/onc.2015.198
Article CAS PubMed Google Scholar
Farra, R., Grassi, G., Tonon, F., et al., The role of the transcription factor E2F1 in hepatocellular carcinoma, Curr. Drug Deliv., 2017, vol. 14, no. 2, pp. 272–281. https://doi.org/10.2174/1567201813666160527141742
Article CAS PubMed Google Scholar
Mega, S., Miyamoto, M., Ebihara, Y., et al., Cyclin D1, E2F1 expression levels are associated with characteristics and prognosis of esophageal squamous cell carcinoma, Dis. Esophagus, 2005, vol. 18, no. 2, pp. 109–113. https://doi.org/10.1111/j.1442-2050.2005.00463
Article CAS PubMed Google Scholar
Ma, Y., Wang, S., Bao, J., et al., Systematic study on expression and prognosis of E2Fs in human colorectal cancer, Int. J. Clin. Oncol., 2022, vol. 27, no. 2, pp. 362–372. https://doi.org/10.1007/s10147-021-02051-2
Article CAS PubMed Google Scholar
Yilmaz, M. and Christofori, G., EMT, the cytoskeleton, and cancer cell invasion, Cancer Metastasis Rev., 2009, vol. 28, nos. 1–2, pp. 15–33. https://doi.org/10.1007/s10555-008-9169-0
Saitoh, M., Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-beta signaling during tumor progression, Cancer Sci., 2015, vol. 106, no. 5, pp. 481–488. https://doi.org/10.1111/cas.12630
Comments (0)