miR-17-5p Accelerates the Proliferation and Invasion of Colorectal Cancer via Regulating E2F1

Bray, F., Ferlay, J., Soerjomataram, I., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA—Cancer J. Clin., 2018, vol. 68, no. 6, pp. 394–424. https://doi.org/10.3322/caac.21492

Article  PubMed  Google Scholar 

Arnold, M., Sierra, M.S., Laversanne, M., et al., Global patterns and trends in colorectal cancer incidence and mortality, Gut, 2017, vol. 66, no. 4, pp. 683–691. https://doi.org/10.1136/gutjnl-2015-310912

Article  PubMed  Google Scholar 

Brenner, D.R., Heer, E., Sutherland, R.L., et al., National trends in colorectal cancer incidence among older and younger adults in Canada, JAMA Network Open, 2019, vol. 2, no. 7, p. e198090. https://doi.org/10.1001/jamanetworkopen.2019.8090

Article  PubMed  PubMed Central  Google Scholar 

Sridharan, M., Hubbard, J.M., and Grothey, A., Colorectal cancer: how emerging molecular understanding affects treatment decisions, Oncology (Williston Park), 2014, vol. 28, no. 2, pp. 110–118.

PubMed  Google Scholar 

Weiland, M., Gao, X.H., Zhou, L., et al., Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases, RNA Biol., 2012, vol. 9, no. 6, pp. 850–859. https://doi.org/10.4161/rna.20378

Article  CAS  PubMed  Google Scholar 

Martens-Uzunova, E.S., Olvedy, M., and Jenster, G., Beyond microRNA—novel RNAs derived from small non-coding RNA and their implication in cancer, Cancer Lett., 2013, vol. 340, no. 2, pp. 201–211. https://doi.org/10.1016/j.canlet.2012.11.058

Article  CAS  PubMed  Google Scholar 

Slattery, M.L., Herrick, J.S., Mullany, L.E., et al., The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer, Genes Chromosomes Cancer, 2017, vol. 56, no. 11, pp. 769–787. https://doi.org/10.1002/gcc.22481

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onur, E. and Denkçeken, T., Integrative analysis of molecular genetic targets and pathways in colorectal cancer through screening large-scale microarray data, Int. J. Data Min. Bioinf., 2021, vol. 26, nos. 1–2, pp. 81–98. https://doi.org/10.1504/ijdmb.2021.124112

Article  Google Scholar 

Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Fuccio, L., Repici, A., Hassan, C., et al., Why attempt en bloc resection of non-pedunculated colorectal adenomas? A systematic review of the prevalence of superficial submucosal invasive cancer after endoscopic submucosal dissection, Gut, 2018, vol. 67, no. 8, pp. 1464–1474. https://doi.org/10.1136/gutjnl-2017-315103

Article  PubMed  Google Scholar 

Røed Skårderud, M., Polk, A., Kjeldgaard Vistisen, K., et al., Efficacy and safety of regorafenib in the treatment of metastatic colorectal cancer: a systematic review, Cancer Treat. Rev., 2018, vol. 62, pp. 61–73. https://doi.org/10.1016/j.ctrv.2017.10.011

Article  CAS  PubMed  Google Scholar 

Chen, N., Li, W., Huang, K., et al., Increased platelet—lymphocyte ratio closely relates to inferior clinical features and worse long-term survival in both resected and metastatic colorectal cancer: an updated systematic review and meta-analysis of 24 studies, Oncotarget, 2017, vol. 8, no. 19, pp. 32356–32369. https://doi.org/10.18632/oncotarget.16020

Article  PubMed  PubMed Central  Google Scholar 

Shan, S.W., Fang, L., Shatseva, T., et al., Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways, J. Cell Sci., 2013, vol. 126, no. 6, pp. 1517–1530. https://doi.org/10.1242/jcs.122895

Article  CAS  PubMed  Google Scholar 

Wu, Q., Luo, G., Yang, Z., et al., miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells, FEBS Lett., 2014, vol. 588, no. 12, pp. 2055–2062. https://doi.org/10.1016/j.febslet.2014.04.036

Article  CAS  PubMed  Google Scholar 

Yang, X., Du, W.W., Li, H., et al., Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion, Nucleic Acids Res., 2013, vol. 41, no. 21, pp. 9688–9704. https://doi.org/10.1093/nar/gkt680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L., He, L., Zhao, J.L., et al., MiR-17-5p up-regulates YES1 to modulate the cell cycle progression and apoptosis in ovarian cancer cell lines, J. Cell Biochem., 2015, vol. 116, no. 6, pp. 1050–1059. https://doi.org/10.1002/jcb.25060

Article  CAS  PubMed  Google Scholar 

Yang, F., Li, Y., Xu, L., et al., miR-17 as a diagnostic biomarker regulates cell proliferation in breast cancer, Onco Targets Ther., 2017, vol. 10, pp. 543–550. https://doi.org/10.2147/ott.S127723

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, H., Zou, J., Dong, Z., et al., Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma, Biochem. J., 2012, vol. 442, no. 2, pp. 311–321. https://doi.org/10.1042/bj20111517

Article  CAS  PubMed  Google Scholar 

Yu, W., Wang, J., Li, C., et al., miR-17-5p promotes the invasion and migration of colorectal cancer by regulating HSPB2, J. Cancer, 2022, vol. 13, no. 3, pp. 918–931. https://doi.org/10.7150/jca.65614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, F., Jiang, W., Zhou, L., et al., Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer, Transl. Oncol., 2018, vol. 11, no. 2, pp. 221–232. https://doi.org/10.1016/j.tranon.2017.12.012

Article  PubMed  PubMed Central  Google Scholar 

Wang, M., Gu, H., Wang, S., et al., Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer, Mol. Med. Rep., 2012, vol. 5, no. 6, pp. 1514–1520. https://doi.org/10.3892/mmr.2012.828

Article  CAS  PubMed  Google Scholar 

Zeng, X., Xiang, J., Wu, M., et al., Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma, PLoS One, 2012, vol. 7, no. 10. https://doi.org/10.1371/journal.pone.0046367

Chen, H.Z., Tsai, S.Y., and Leone, G., Emerging roles of E2Fs in cancer: an exit from cell cycle control, Nat. Rev. Cancer, 2009, vol. 9, no. 11, pp. 785–797. https://doi.org/10.1038/nrc2696

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y., Deng, O., Feng, Z., et al., RNF126 promotes homologous recombination via regulation of E2F1-mediated BRCA1 expression, Oncogene, 2016, vol. 35, no. 11, pp. 1363–1372. https://doi.org/10.1038/onc.2015.198

Article  CAS  PubMed  Google Scholar 

Farra, R., Grassi, G., Tonon, F., et al., The role of the transcription factor E2F1 in hepatocellular carcinoma, Curr. Drug Deliv., 2017, vol. 14, no. 2, pp. 272–281. https://doi.org/10.2174/1567201813666160527141742

Article  CAS  PubMed  Google Scholar 

Mega, S., Miyamoto, M., Ebihara, Y., et al., Cyclin D1, E2F1 expression levels are associated with characteristics and prognosis of esophageal squamous cell carcinoma, Dis. Esophagus, 2005, vol. 18, no. 2, pp. 109–113. https://doi.org/10.1111/j.1442-2050.2005.00463

Article  CAS  PubMed  Google Scholar 

Ma, Y., Wang, S., Bao, J., et al., Systematic study on expression and prognosis of E2Fs in human colorectal cancer, Int. J. Clin. Oncol., 2022, vol. 27, no. 2, pp. 362–372. https://doi.org/10.1007/s10147-021-02051-2

Article  CAS  PubMed  Google Scholar 

Yilmaz, M. and Christofori, G., EMT, the cytoskeleton, and cancer cell invasion, Cancer Metastasis Rev., 2009, vol. 28, nos. 1–2, pp. 15–33. https://doi.org/10.1007/s10555-008-9169-0

Article  PubMed  Google Scholar 

Saitoh, M., Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-beta signaling during tumor progression, Cancer Sci., 2015, vol. 106, no. 5, pp. 481–488. https://doi.org/10.1111/cas.12630

Article  CAS  PubMed 

Comments (0)

No login
gif