Saberian E, Jenča A, Zafari Y, Jenča A, Petrášová A, Zare-Zardini H, et al. Scaffold application for bone regeneration with stem cells in dentistry: literature review. Cells. 2024;13(12):1065. https://doi.org/10.3390/cells13121065.
Article PubMed PubMed Central CAS Google Scholar
Saberian E, Jenča A, Seyfaddini R, Jenča A, Zare-Zardini H, Petrášová A, et al. Comparative analysis of osteoblastic responses to titanium and alumina-toughened zirconia implants: an in vitro study. Biomolecules. 2024;14(6):719. https://doi.org/10.3390/biom14060719.
Article PubMed PubMed Central CAS Google Scholar
Saberian E, Jenča A, Petrášová A, Zare-Zardini H, Ebrahimifar M. Application of scaffold-based drug delivery in oral cancer treatment: a novel approach. Pharmaceutics. 2024;16(6):802. https://doi.org/10.3390/pharmaceutics16060802.
Article PubMed PubMed Central Google Scholar
Parizad G, Bagheri R, Elham S, Andrej J, Adriána P, Janka J, et al. Enhancing cisplatin delivery via liposomal nanoparticles for oral cancer treatment. Ind J Clin Biochem. 2024;1:1. https://doi.org/10.1007/s12291-024-01239-3.
Silva S, Hier M, Mlynarek A, Kowalski L, Alaoui-Jamali M. Recurrent oral cancer: current and emerging therapeutic approaches. Front Pharmacol. 2012;3:1. https://doi.org/10.3389/fphar.2012.00149.
Poy D, Akbarzadeh A, Ebrahimi Shahmabadi H, Ebrahimifar M, Farhangi A, Farahnak Zarabi M, Akbari A, Saffari Z, Siami F. Preparation, characterization, and cytotoxic effects of liposomal nanoparticles containing; cisplatin: an in vitro study. Chem Biol Drug Des. 2016;88(4):568–73. https://doi.org/10.1111/cbdd.1278636.
Article PubMed CAS Google Scholar
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J Exp Pharmacol. 2021;13:303–28. https://doi.org/10.2147/JEP.S267383.
Article PubMed PubMed Central Google Scholar
Dasari S, Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025.
Article PubMed PubMed Central CAS Google Scholar
Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007. https://doi.org/10.1038/sj.ki.5002786.
Article PubMed CAS Google Scholar
Ebrahimifar M, Hasanzadegan Roudsari M, Kazemi SM, Ebrahimi Shahmabadi H, Kanaani L, Alavi SA, Izadi Vasfi M. Enhancing effects of curcumin on cytotoxicity of paclitaxel, methotrexate and vincristine in gastric cancer cells. Asian Pac J Cancer Prev. 2017;18(1):65–8. https://doi.org/10.2234/APJCP.2017.18.1.6537.
Article PubMed PubMed Central Google Scholar
Srivastava N, Srivastava R. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine. 2019;52:117–28. https://doi.org/10.1016/j.phymed.2018.09.224.
Article PubMed CAS Google Scholar
Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W, Yang D, Yang A, Yu Y. Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep. 2018;39(3):1523–31. https://doi.org/10.3892/or.2018.6188.
Article PubMed CAS Google Scholar
Almatroodi S, Syed M, Rahmani A. Potential therapeutic targets of curcumin, most abundant active compound of turmeric spice: role in the management of various types of cancer. Recent Pat Anticancer Drug. 2020;16(1):3–29. https://doi.org/10.2174/1574892815999201102214602.
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara A. Curcumin formulations for better bioavailability: What we learned from clinical trials thus far? ACS Omega. 2023;8(12):10713–46. https://doi.org/10.1021/acsomega.2c07326.
Article PubMed PubMed Central CAS Google Scholar
Cheng Y, Zhao P, Wu Sh, Yang T, et al. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int J Pharm. 2018;545(1–2):261–73. https://doi.org/10.1016/j.ijpharm.2018.05.007.
Article PubMed CAS Google Scholar
Mohamadi N, Kazemi SM, Mohammadian M, Toofani Milani A, Moradi Y, Yasemi M, Ebrahimifar M, Mazloumi Tabrizi M, Ebrahimi Shahmabadi H, AkbarzadehKhiyavi A. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results. Asian Pac J Cancer Prev. 2017;18(3):629–32. https://doi.org/10.22034/APJCP.2017.18.3.62938.
Article PubMed PubMed Central Google Scholar
Amiri B, Ebrahimifar M, Saffari Z, Akbarzadeh A, Soleimani E, Chiani M. Preparation, characterization and cytotoxicity of silibinin-containing nanoniosomes in T47D human breast carcinoma cells. Asian Pac J Cancer Prev. 2016;17(8):3835–40.
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36. https://doi.org/10.1016/j.jconrel.2014.04.015.
Article PubMed CAS Google Scholar
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci. 2018;2018(1):6847971. https://doi.org/10.1155/2018/6847971.
Article PubMed PubMed Central CAS Google Scholar
Khan D, Bashir S, Correia A, Khan M, Figueiredo P, Santos H, Peltonen L. Utilization of green formulation technique and efficacy estimation on cell line studies for dual anticancer drug therapy with niosomes. Int J Pharm. 2019;572: 118764. https://doi.org/10.1016/j.ijpharm.2019.118764.
Article PubMed CAS Google Scholar
Momekova D, Gugleva V, Petrov P. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega ACS Omega. 2021;6(49):33265–73. https://doi.org/10.1021/acsomega.1c05083.
Article PubMed CAS Google Scholar
Kumar S, Kaur D. Niosome as an innovative drug delivery system. Central Asian J Med Nat Sci. 2020;1(1):1–15. https://doi.org/10.17605/cajmns.v1i1.19.
Ge X, Wei M, He S, Yuan W. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55. https://doi.org/10.3390/pharmaceutics11020055.
Article PubMed PubMed Central CAS Google Scholar
Tavano L, Muzzalupo R. Multi-functional vesicles for cancer therapy: the ultimate magic bullet. Colloids Surf B Biointerfaces. 2016;147:161–71. https://doi.org/10.1016/j.colsurfb.2016.07.060.
Article PubMed CAS Google Scholar
Tardi PG, Dos Santos N, Harasym TO, Johnstone SA, Zisman N, Tsang AW, Bermudes DG, Mayer LD. Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther. 2019;8(8):2266–75. https://doi.org/10.1158/1535-7163.MCT-09-0243.
Maswadeh H, Khan A, Alorainy M, Al-Wabel N, Demetzos C. Concomitant delivery of doxorubicin and cisplatin through liposome-based thermosensitive nanoparticles: perspective in the treatment of cancer in animal models. Am J Cancer Res. 2023;13(2):379–93.
PubMed PubMed Central CAS Google Scholar
Harsin A, Firozian F, Soleimani M, Mehri F, Ranjbar A. Evaluation of ascorbic acid niosomes as potential detoxifiers in oxidative stress-induced HEK-293 cells by arsenic trioxide. Iran J Pharm Res. 2022;21(1): e127038. https://doi.org/10.5812/ijpr-127038.
Li C, Ge X, Wang L. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: a synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother. 2017;86:628–36. https://doi.org/10.1016/j.biopha.2016.12.042.
Comments (0)