An Y, Zhang L, Liu W, Jiang Y, Chen X, Lan X, Li G, Hang Q, Wang J, Gusella JF, Du Y, Shen Y (2020) De novo variants in the Helicase-C domain of CHD8 are associated with severe phenotypes including autism, language disability and overgrowth. Hum Genet 139(4):499–512. https://doi.org/10.1007/s00439-020-02115-9
Article CAS PubMed Google Scholar
Bakker J, Leinders-Zufall T, Chamero P (2020) The sense of smell: role of the olfactory system in social behavior. In: Neuroscience in the 21st Century: from basic to clinical 1–29. https://doi.org/10.1007/978-1-4614-6434-1_29-4
Barnard RA, Pomaville MB, O’Roak BJ (2015) Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front Neurosci 9:477. https://doi.org/10.3389/fnins.2015.00477
Article PubMed PubMed Central Google Scholar
Bednarczyk MR, Aumont A, Decary S, Bergeron R, Fernandes KJ (2009) Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice. Hippocampus 19(10):913–927. https://doi.org/10.1002/hipo.20621
Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, Witherspoon K, Gerdts J, Baker C, Vulto-van Silfhout AT, Schuurs-Hoeijmakers JH, Fichera M, Bosco P, Buono S, Alberti A, Failla P, Peeters H, Steyaert J, Vissers L, Francescatto L, Mefford HC, Rosenfeld JA, Bakken T, O’Roak BJ, Pawlus M, Moon R, Shendure J, Amaral DG, Lein E, Rankin J, Romano C, de Vries BBA, Katsanis N, Eichler EE (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158(2):263–276. https://doi.org/10.1016/j.cell.2014.06.017
Article CAS PubMed PubMed Central Google Scholar
Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563. https://doi.org/10.1038/nrn3992
Article CAS PubMed Google Scholar
Chan MMY, Han YMY (2020) Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: a meta-analysis of neuroimaging studies. Mol Autism 11(1):72. https://doi.org/10.1186/s13229-020-00374-x
Article PubMed PubMed Central Google Scholar
Cotney J, Muhle RA, Sanders SJ, Liu L, Willsey AJ, Niu W, Liu W, Klei L, Lei J, Yin J, Reilly SK, Tebbenkamp AT, Bichsel C, Pletikos M, Sestan N, Roeder K, State MW, Devlin B, Noonan JP (2015) The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat Commun 6:6404. https://doi.org/10.1038/ncomms7404
Article CAS PubMed Google Scholar
Cox KH, Rissman EF (2011) Sex differences in juvenile mouse social behavior are influenced by sex chromosomes and social context. Genes Brain Behav 10(4):465–472. https://doi.org/10.1111/j.1601-183X.2011.00688.x
Article CAS PubMed Google Scholar
Dickter CL, Burk JA, Fleckenstein K, Kozikowski CT (2018) Autistic traits and social anxiety predict differential performance on social cognitive tasks in typically developing young adults. PLoS ONE 13(3):e0195239. https://doi.org/10.1371/journal.pone.0195239
Article CAS PubMed PubMed Central Google Scholar
Dong C, Zhao C, Chen X, Berry K, Wang J, Zhang F, Liao Y, Han R, Ogurek S, Xu L, Zhang L, Lin Y, Zhou W, Xin M, Lim DA, Campbell K, Nakafuku M, Waclaw RR, Lu QR (2022) Conserved and distinct functions of the autism-related chromatin remodeler CHD8 in embryonic and adult forebrain neurogenesis. J Neurosci 42(44):8373–8392. https://doi.org/10.1523/JNEUROSCI.2400-21.2022
Article CAS PubMed PubMed Central Google Scholar
Gage FH (2019) Adult neurogenesis in mammals. Science 364(6443):827–828. https://doi.org/10.1126/science.aav6885
Article CAS PubMed Google Scholar
Gage FH (2021) Adult neurogenesis in neurological diseases. Science 374(6571):1049–1050. https://doi.org/10.1126/science.abm7468
Article CAS PubMed Google Scholar
Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, Stradleigh TW, Pride MC, Schaffler MD, Wade AA, Catta-Preta R, Zdilar I, Louis S, Kaushik G, Mannion BJ, Plajzer-Frick I, Afzal V, Visel A, Pennacchio LA, Dickel DE, Lerch JP, Crawley JN, Zarbalis KS, Silverman JL, Nord AS (2017) Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci 20(8):1062–1073. https://doi.org/10.1038/nn.4592
Article CAS PubMed PubMed Central Google Scholar
Hurley S, Mohan C, Suetterlin P, Ellingford R, Riegman KLH, Ellegood J, Caruso A, Michetti C, Brock O, Evans R, Rudari F, Delogu A, Scattoni ML, Lerch JP, Fernandes C, Basson MA (2021) Distinct, dosage-sensitive requirements for the autism-associated factor CHD8 during cortical development. Mol Autism 12(1):16. https://doi.org/10.1186/s13229-020-00409-3
Article CAS PubMed PubMed Central Google Scholar
Jimenez JA, Ptacek TS, Tuttle AH, Schmid RS, Moy SS, Simon JM, Zylka MJ (2020) Chd8 haploinsufficiency impairs early brain development and protein homeostasis later in life. Mol Autism 11(1):74. https://doi.org/10.1186/s13229-020-00369-8
Article CAS PubMed PubMed Central Google Scholar
Jung H, Park H, Choi Y, Kang H, Lee E, Kweon H, Roh JD, Ellegood J, Choi W, Kang J, Rhim I, Choi SY, Bae M, Kim SG, Lee J, Chung C, Yoo T, Park H, Kim Y, Ha S, Um SM, Mo S, Kwon Y, Mah W, Bae YC, Kim H, Lerch JP, Paik SB, Kim E (2018) Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci 21(9):1218–1228. https://doi.org/10.1038/s41593-018-0208-z
Article CAS PubMed Google Scholar
Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, Suyama M, Takumi T, Miyakawa T, Nakayama KI (2016) CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537(7622):675–679. https://doi.org/10.1038/nature19357
Article CAS PubMed Google Scholar
Kawamura A, Nishiyama M (2023) Deletion of the autism-related gene Chd8 alters activity-dependent transcriptional responses in mouse postmitotic neurons. Commun Biol 6(1):593. https://doi.org/10.1038/s42003-023-04968-y
Article CAS PubMed PubMed Central Google Scholar
Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, Nakayama KI (2021) The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 35(1):108932. https://doi.org/10.1016/j.celrep.2021.108932
Article CAS PubMed Google Scholar
Lee SY, Kweon H, Kang H, Kim E (2022) Age-differential sexual dimorphism in CHD8-S62X-mutant mouse behaviors. Front Mol Neurosci 15:1022306. https://doi.org/10.3389/fnmol.2022.1022306
Article CAS PubMed PubMed Central Google Scholar
Lee SY, Kweon H, Kang H, Kim E (2023) Age-differential sexual dimorphisms in CHD8-S62X-mutant mouse synapses and transcriptomes. Front Mol Neurosci 16:1111388. https://doi.org/10.3389/fnmol.2023.1111388
Article CAS PubMed PubMed Central Google Scholar
Lord C, Risi S, DiLavore PS, Shulman C, Thurm A, Pickles A (2006) Autism from 2 to 9 years of age. Arch Gen Psychiatry 63(6):694–701. https://doi.org/10.1001/archpsyc.63.6.694
Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392(10146):508–520. https://doi.org/10.1016/S0140-6736(18)31129-2
Article PubMed PubMed Central Google Scholar
Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790. https://doi.org/10.1038/35097509
Article CAS PubMed Google Scholar
Nishiyama M, Oshikawa K, Tsukada Y, Nakagawa T, Iemura S, Natsume T, Fan Y, Kikuchi A, Skoultchi AI, Nakayama KI (2009) CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat Cell Biol 11(2):172–182. https://doi.org/10.1038/ncb1831
Comments (0)